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Spinor-Helicity Formalism

Consider the Dirac equation for a 4-component spinor:

(i /∂ −m)ψ(x) = 0 (1)

The general solution is a superposition of plane waves:

ψ(x) ∼ u(p)e ipx + v(p)e−ipx (2)

Assuming that the spinors u,v satisfy:

(/p + m)u(p) = 0

(/p −m)v(p) = 0
(3)

We already know that these describe fermions and anti-fermions
respectively. In fact v̄ , u are associated with incoming (anti)fermions and
v , ū are associated with outgoing (anti)fermions.
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Spinor-Helicity Formalism

Let's focus on the spinors describing outgoing particles, v , ū and go to the
massless/high energy limit. The Dirac equation becomes:

ū±(p)/p = 0

/pv±(p) = 0
(4)

In the above, the subscript denotes helicity h = ±1

2
depending on our

choice. we write the two independent solutions to the Dirac equation as:

v+(p) =

[
|p]α
0

]
v−(p) =

[
0

|p〉α̇
]

ū−(p) =
[
0 〈p|α̇

]
ū+(p) =

[
[p|α 0

]
(5)
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Spinor-Helicity Formalism

We thus have introduced two component spinors, the angle spinors |p〉α̇
and the square spinors [p|α. The indices are raised and lowered with the
Levi-Civita symbol: [p|α = εαβ|p]β .
We also introduce the angle and square spinor brakets as:

〈p|q〉 = 〈p|α̇ |q〉
α̇

[pq] = [p|α|q]α

〈p|q〉 [pq] = 2p · q = (p + q)2
(6)

All other brakets vanish, eg〈q| |p]. For real momenta these spinors are not
independent, but instead satisfy:

[p|α = (|p〉α̇)?

〈p|α̇ = (|p]α)?

[pq]? = 〈q|p〉
(7)
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Spinor-Helicity Formalism

Let's see a few examples of scattering amplitudes using the spinor-helicity
formalism, starting from the Yukawa theory. The Lagrangian is:

L = iψ̄γµ∂µψ −
1

2
∂µφ∂

µφ+ gφψ̄ψ (8)

which involves one vertex associated with ig. We consider the amplitude
A4(f̄ h1f h2 f̄ h3f h4). This is a helicity amplitude, since all involved particles
have de�nite helicity. The s-channel diagram is:

=ig ū4v3
−i

(p1+p2)2
ig ū2v1

We can already see that this vanishes unless particles 1(3) and 2(4) have
the same helicity. In the opposite case, we would be dealing with a
vanishing braket.
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Spinor-Helicity Formalism

Assume that particles 1,2 have negative helicity and 3,4 have positive.
Then the above diagram is the only contribution to this process and after
plugging in the appropriate spinors we get:

iA4(f̄ −f −f̄ +f +) = ig2[43]
1

2p1 · p2
〈2|1〉 =

ig2[43]
1

〈2|1〉 [12]
〈2|1〉 = ig2 [34]

[12]

(9)

Which is a nice ratio of two spinor brackets. Using momentum conservation
p1 + p2 = p3 + p4 we can get another form, namely:

iA4(f̄ −f −f̄ +f +) = ig2 〈1|2〉
〈3|4〉

(10)
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Spinor-Helicity Formalism

Another example is the scattering amplitude between two scalars and two
fermions iA(φf̄ h1f h2φ). The two relevant diagrams are:

= (ig)2ū3
−i( /p1 + /p2)

(p1 + p2)2
v2 + 1↔ 4 (11)

The nominator has a product involving the γµ matrices, which forces the
incoming and outgoing spinors to have opposite helicity:
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Spinor-Helicity Formalism

ū−(p3)γµv+(p2) =
[
0 〈3|α̇

] [ 0 σµ
αβ̇

σ̄µα̇β 0

] [
|2]β
0

]
(12)

It is not di�cult to see from this that spinors with the same helicity make
this vanish, i.e. ū−(p3)γµv−(p2) = 0. One then can verify that:

A(φf̄ +f −φ) = −g2(
〈1|3〉
〈1|2〉

+
〈3|4〉
〈2|4〉

) (13)
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Spinor-Helicity Formalism

Finally let's see an application of the spinor helicity formalism to QED,
where there are massless vectors involved. The Lagrangian is the familiar:

L = −1
4
FµνFµν + iψ̄γµ(∂µ − ieAµ)ψ (14)

The vertex is the familiar −ieγµ. The rule for external photons is to
represent them with a polarization vector εµ±. We can represent these
polarization vectors as:

εµ−(p; q) = −〈p| γ
µ|q]√

2[qp]

εµ+(p; q) = −〈q| γ
µ|p]√

2 〈q|p〉

(15)

The q above is an arbitrary reference spinor and as such will drop out of
any �nal result. It re�ects gauge invariance, because one can shift
εµ±(p)→ εµ±(p) + Cpµ and not change the s.a. since pµA

µ = 0.
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Spinor-Helicity Formalism

Consider for instance A3(f h1 f̄ h2f h3), involving a photon, an electron and a
positron. Choose for instance h1 = −1

2
, h2 = 1

2
, h3 = −1. Then we have:

iA3(f −f̄ +γ−) = ū−(p1)ieγµv+(p2)εµ−(p3; q) = −ie 〈1| γµ|2]
〈3| γµ|q]√

2[3q]

A bit of algebra involving identities of the angle and square spinors leads to:

A3(f −f̄ +γ−) =
√
2e
〈1|3〉2

〈1|3〉
(16)

The fact that the �nal result depends only on angle brackets is no
coincidence but a consequence of 3-particle special kinematics. Any 3-point
on shell amplitude with massless particles depends only on either square
brackets or angle brackets of the external momenta.
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Colour-Ordered Amplitudes

We now proceed to consider gluon scattering. The Lagrangian describing
gluons is the usual:

L = −1
4
FαµνF

αµν (17)

We consider a general SU(N) group, whose algebra is:[
T a,T b

]
= if abcT c (18)

In order to extract the Feynman rules and the propagator we choose the
Gervais-Neveu gauge, in which the Lagrangian takes the form:

L = Tr(−1
2
∂µAν∂

µAν − i
√
2g∂µAνAνAµ +

g2

4
AµAνAνAµ) (19)

The gluon propagator in this case is simply: ∆αβ
Fµν(p) = δαβ

ηµν

p2
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Colour-Ordered Amplitudes

Consider now a tree-level scattering amplitude. In general, this involves
products of the structure constants and generators of the gauge-group but
can always be arranged in the form:

Atree
n = gn−2

∑
permsσ

An[1σ(2...n)]Tr(T a1T σ(a2 ...T an)) (20)

The partial amplitudes involved in the above sum are called colour ordered
amplitudes and are gauge invariant. As an example to this, consider the s
channel tree-level 4-gluon amplitude.

∼ f a1a2bf ba3a4
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Colour-Ordered Amplitudes

We can use the completeness relation if abc = Tr(T aT bT c)−Tr(T bT aT c)

as well as the completeness relation (T a)ji (T
a)lk = δli δ

j
k −

1

N δ
j
i δ

l
k to write:

f a1a2bf ba3a4 ∼
Tr(T a1T a2T a3T a4)− Tr(T a1T a2T a4T a3)− Tr(T a1T a3T a4T a2)

+ Tr(T a1T a4T a3T a2)

(21)

Notice the cyclic permutations of indices 2,3,4. This means that the total
amplitude can be written as:

Atree
4 = g2(A4[1234]Tr(T a1T a2T a3T a4) + perms(2, 3, 4)) (22)

which is of the form of eq. 20. So we only need to calculate one amplitude
in order to get our answer. These diagrams are computed without any
crossing lines and with the indices �xed in the order written.
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Colour-Ordered Amplitudes

The Feynman rules for colour ordered amplitudes are:

V µ1µ2µ3(p1, p2, p3) = −
√
2(ηµ1µ2pµ3

1
+ ηµ2µ3pµ1

2
+ ηµ3µ1pµ2

3
)

V µ1µ2µ3µ4(p1, p2, p3, p4) = ηµ1µ3ηµ2µ4
(23)

The polarization vectors are the same as in QED. One can see the power of
this technology when considering for instance the 3-gluon scattering
amplitude:

A3[123] = −
√
2[(ε1ε2)(ε3p1) + (ε2ε3)(ε1p2) + (ε3ε1)(ε2p3)] (24)

By using 3-particle special kinematics and properties of the spinor-helicity
formalism, one can �nd that the non-vanishing colour-ordered helicity
amplitudes are:

A3(1−2−3+) =
〈1|2〉3

〈2|3〉 〈3|1〉
A3(1+2+3−) =

[12]3

[23][31]
(25)
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Colour-Ordered Amplitudes

Another powerful result can be obtained when one considers n gluons
scattering, with i,j having helicity -1 and the other n-2 have helicity +1.
This is the so-called Parke-Taylor n-gluon tree amplitude and is given by:

An[1+...i−...j−...n+] =
〈i |j〉4

〈1|2〉 〈2|3〉 ... 〈n|1〉
(26)

Thus the 4-gluon tree level amplitude for example would be:

A4[1−2−3+4+] =
〈1|2〉4

〈1|2〉 〈2|3〉 〈3|4〉 〈4|1〉
(27)
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MHV Amplitudes

One can show by using dimensional analysis and a proper choice of
polarization vectors, that An(1+2+...n+) = 0. The same holds true for
An(1−2+...n+) = 0. The �rst non vanishing amplitude is in fact of the
form of eq 26 An(1−2−3+...n+). This is known as a maximally helicity
violating-MHV amplitude. The MHV gluon amplitudes are the simplest
amplitudes in Yang-Mills theory.
Flipping one more helicity we obtain An(1−2−3−...n+) which is a NMHV
amplitude (next to MHV). The notion generalizes to NkMHV amplitudes,
which have k+2 negative helicities and n-k-2 positive ones. On the
contrary, if k=n we have an anti-MHV amplitude which has n-2 negative
helicities and exactly two positive ones. This can easily be obtained from
the MHV amplitude with all helicities �ipped by simply exchanging angle
brackets with square brackets.
Another important result is that NkMHV amplitudes can be written as a
sum of all tree-level diagrams with precisely K+1 MHV vertices-this is
known as the MHV vertex expansion or CSW expansion. It is based on
recursion relations that exist among scattering amplitudes.
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Recursion Relations

Another approach to studying scattering amplitudes is to use tools from
complex analysis. One starts by considering shifted momenta on an
amplitude:

p̂µi = pµi + zrµi (28)

where the vectors rµi are chosen with desirable properties, such as∑
i r
µ
i = 0 which guarantees momentum conservation for the shifted

momenta. We want to consider the shifted amplitude Ân(z) as a function
of z.
A generic propagator in a tree-level graph involves ∼ 1/P2

I where
PµI =

∑
i∈I p

µ
i . By choosing rµi to be light-like, one can show that

P̂I
2

= −
P2

I

zI
(z − zi ), zI = −

P2

I

2PI · RI

(29)

Thus the poles of Ân(z) are simple poles and for generic momenta they are
all located away from the origin.
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Recursion Relations

Consider now Ân(z)
z . This has simple poles at z = zI and one pole at z = 0.

The residue at the origin is the just the original amplitude An. Thus, from
Cauchy's theorem we get:

An = −
∑
zI

Resz=zI (
Ân(z)

z
) + Bn (30)

The Bn is a contribution coming from the pole at in�nity. Usually one
assumes or proves this to be 0. The reason for all the above is that at each
of the zI poles, the propagator goes on shell and the amplitude factorizes
into two subamplitudes:

Resz=zI

Ân(z)

z
= −ÂL(zI )

1

P2

I

ÂR(zI ) (31)
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Recursion Relations

Factorization of the amplitude at the pole zI

The rule for the internal line in the above graph is to just write the
propagator of the unshifted momenta 1/P2

I . Each of the two subamplitudes
involves less than n particles, and is thus easier to compute. Provided that
Bn → 0, the shift is called good and then n-point amplitude is completely
determined in terms of lower point on-shell amplitudes.

An =
∑

diagramsI

ÂL(zI )
1

P2

I

ÂR(zI ) (32)

which is the most general form of a recursion relation.
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Recursion Relations

The most famous of the recursion relations is the so-called BCFW relation.
In that, one shifts just two of the involved momenta, say i and j. In terms
of angle and square spinors, this is expressed as:

[î ] = [i ] + z [j ]
∣∣∣ĵ〉 = |j〉 − z |i〉

[ĵ ] = [j ]
∣∣∣î〉 = |i〉

(33)

One can use this for instance to construct an inductive proof of the
Parke-Taylor n-gluon tree amplitude formula we presented earlier (26).
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Recursion Relations

Recursion relations can be applied to various �eld theories in order to
obtain the tree-level scattering amplitudes. Some examples include:

Yang-Mills theories: we already got a sense of it by studying gluon
amplitudes. An amazing feature is that the information needed for the
amplitudes is fully captured by the cubic term AA∂A, without needing
to involve the quartic vertex A4.

N = 4 SYM theory. When SUSY is incorporated in the BCFW
recursion relations all tree amplitudes of this theory can be determined
by the 3-point gluon vertex alone.

Gravity: Because of the validity of BCFW recursion relations, the entire
on-shell S-matrix for gravity is �xed by the 3-graviton vertex. The
in�nite terms appearing in the EH action S = 1

2κ2

∫
d4x
√
−gR exists

just to ensure di�eomorphism invariance of the o�-shell Lagrangian.
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Supersymmetry

Supersymmetry transformations map bosons to fermions and vice versa. To
get a visual of this consider a Weyl fermion and a complex scalar �eld:

L = iψ†σ̄µ∂µψ − ∂µφ̄∂µφ (34)

Up to a total derivative, the transformations:

δεφ = εψ, δεψα = −iσµ
αβ̇
ε†β̇∂µφ (35)

leave the Lagrangian unchanged. Consider furthermore an interaction
Lagrangian of the form:

LI =
1

2
gφψψ +

1

2
g?φ̄ψ†ψ† − 1

4
|g |2|φ|4 (36)

Scattering amplitudes with external states related by SUSY are related to
each other through linear relationships called supersymmetric Ward
identities. Let's see an example:

George Goulas Scattering Amplitudes November 3, 2021 22 / 25



Supersymmetry

Assuming a supersymmetric vacuum Q |0〉 = Q† |0〉 = 0, the following
v.e.v. vanishes:

〈0|
[
Q†, a−(p1)b−(p2)a+(p3)a+(p4)

]
|0〉 = 0 (37)

The a operators are associated with the scalar �eld in our Lagrangian and b
with the fermion. Expanding the r.h.s. and using some SUSY algebra we
obtain:

0 = |2〉A4(φφφ̄φ̄)− |3〉A4(φf −f +φ̄)− |4〉A4(φf −φ̄f +) (38)

Then by dotting the above with proper bra spinors (and recalling that
momenta are null) we can obtain various relations such as:

A4(φf −φ̄f +) = −〈2|3〉
〈2|4〉

A4(φf −f +φ̄) (39)
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Supersymmetry

Most of the technology introduced earlier can be properly extended to
supersymmetric theories. We can de�ne for instance chiral super�elds and
superamplitudes and process these using supersymmetric versions of the
BCFW shift or the MHV vertex expansion with many of the result holding
true in this case as well.
For instance, we have already seen that at tree level the amplitudes
An(1+2+...n+) = An(1−2+...n+) = 0. If we include supersymmetry then
the corresponding amplitudes in SYM vanish to all orders in perturbation
theory:

AL−loop
n (g+g+...g+) = AL−loop

n (g−g+...g+) = 0 (40)
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The end

Thank you for your attention.

George Goulas Scattering Amplitudes November 3, 2021 25 / 25


