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Many-body localised phase

Theory based on existence of local integrals of motion (LIOM).
Serbyn, Papic, Abanin PRL 2013, Huse, Nandkishore, Oganesyan PRB 2014

Example: disordered Heisenberg chain

H =
∑
j

~hj · ~σj + J
∑
j

~σj · ~σj+1

For J = 0, LIOM τ zj = (~hj/hj) · ~σj .

For small J 6= 0 , LIOM τ̃ zj = τ zj + exponential tails
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Resonances

In Anderson localised phase

Analogous phenomena in MBL phase

I Gopalakrishnan et al. PRB 92 104202 (2015)

I Imbrie PRL 117 027201 (2016)

I Crowley & Chandran arXiv:2012.14393

I Morningstar et al. arXiv:2107.05642
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Overview

I Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

I Develop theory in terms of properties of ‘standard’ LIOM

I Resonances as features in spectra of local evolution operators.

I ‘Locally pairwise’; eigenstates participate in ∼ L resonances.

I Find small J 6= 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

I Capture behaviour not usually considered ‘localised’.



Overview

I Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

I Develop theory in terms of properties of ‘standard’ LIOM

I Resonances as features in spectra of local evolution operators.

I ‘Locally pairwise’; eigenstates participate in ∼ L resonances.

I Find small J 6= 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

I Capture behaviour not usually considered ‘localised’.



Overview

I Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

I Develop theory in terms of properties of ‘standard’ LIOM

I Resonances as features in spectra of local evolution operators.

I ‘Locally pairwise’; eigenstates participate in ∼ L resonances.

I Find small J 6= 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

I Capture behaviour not usually considered ‘localised’.



Overview

I Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

I Develop theory in terms of properties of ‘standard’ LIOM

I Resonances as features in spectra of local evolution operators.

I ‘Locally pairwise’; eigenstates participate in ∼ L resonances.

I Find small J 6= 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

I Capture behaviour not usually considered ‘localised’.



Overview

I Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

I Develop theory in terms of properties of ‘standard’ LIOM

I Resonances as features in spectra of local evolution operators.

I ‘Locally pairwise’; eigenstates participate in ∼ L resonances.

I Find small J 6= 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

I Capture behaviour not usually considered ‘localised’.



Avoided crossings as resonances

From here: Floquet analogue of disordered Heisenberg chain

Floquet operator W , with W |n〉 = e iθn |n〉, n = 1 . . . 2L

θn = quasienergy, average d.o.s.
∑

n〈δ2π(θ − θn)〉 = [2π]−1 × 2L.
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Level curvatures

Distribution of level curvatures κn = ∂2λθn. At large κ

pκ(κ) ∼ L|κ|−(2−ζ ln 2)

ζ = decay length for standard LIOM not involved in resonances.
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Level curvatures

Distribution of level curvatures κn = ∂2λθn. At large κ

pκ(κ) ∼ L|κ|−(2−ζ ln 2)

ζ = decay length for standard LIOM not involved in resonances.
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Local observables

LIOM at J = 0 are single-site τ zj = (~hj/hj) · ~σj .
=⇒ For J = 0, 〈n|τ zj |m〉 = 0 for n 6= m.

For J 6= 0? Not so!

Z = | 〈n|τ zj |m〉 |2

pZ (Z ) ∼ 2−LZ−3/2.

Parametric approach gives behaviour on/off resonance → distributions.
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Decay length

I Effective ζ = ζ(J) is an average over space and disorder.

I From perturbation theory expect e−p/ζ ∼ Jp, or

ζ(J) =
1

ln[J0/J]

I From theory + numerics on physical quantities, infer ζ
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Decay length
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Overview

I Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

I Develop theory in terms of properties of ‘standard’ LIOM

I Resonances as features in spectra of local evolution operators.

I ‘Locally pairwise’; eigenstates participate in ∼ L resonances.

I Find small J 6= 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

I Capture behaviour not usually considered ‘localised’.



Spectral function see also Gopalakrishnan et al. PRB 2015, Crowley & Chandran arXiv:2012.14393

〈Sz(ω)〉 ∼ ω−ζ ln 2
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Spectral statistics

Two-point correlator of the level density

pω(ω) = [2π]−1
[
1− a

L

2L
ω−ζ ln 2 + . . .

]
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