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Many-body localised phase

Theory based on existence of local integrals of motion (LIOM).
Serbyn, Papic, Abanin PRL 2013, Huse, Nandkishore, Oganesyan PRB 2014
Example: disordered Heisenberg chain
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Many-body localised phase

Theory based on existence of local integrals of motion (LIOM).
Serbyn, Papic, Abanin PRL 2013, Huse, Nandkishore, Oganesyan PRB 2014
Example: disordered Heisenberg chain

H=Y h-&+JY 5 dn
J J
For J = 0, L|OM 7'J-Z = (hj/hj) O_"J

For small J # 0, LIOM TP =17+ exponential tails



Resonances

In Anderson localised phase

Kramer & MacKinnon '93 Rep. Prog. Phys.



Resonances

In Anderson localised phase
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Analogous phenomena in MBL phase
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Gopalakrishnan et al. PRB 92 104202 (2015)
Imbrie PRL 117 027201 (2016)

Crowley & Chandran arXiv:2012.14393
Morningstar et al. arXiv:2107.05642
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P> Resonances as features in spectra of local evolution operators.

P> ‘Locally pairwise’; eigenstates participate in ~ L resonances.

» Find small J # 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

» Capture behaviour not usually considered ‘localised’.
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Avoided crossings as resonances
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From here: Floquet analogue of disordered Heisenberg chain
Floquet operator W, with W |n) = e/ |n), n=1...2¢
0, = quasienergy, average d.o.s. >, (62:(0 — 6,)) = [27] 71 x 2L.



Level curvatures

Distribution of level curvatures k, = 85\0,,. At large k
Pu(k) ~ L|s|~@=¢"2)

¢ = decay length for standard LIOM not involved in resonances.



Level curvatures

Distribution of level curvatures k, = 85\0,,. At large k
pn(/'i) ~ L|H’_(2_<In 2)

¢ = decay length for standard LIOM not involved in resonances.
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Local observables
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Decay length

» Effective ¢ = ((J) is an average over space and disorder.

» From perturbation theory expect e P/¢ ~ JP, or

1
)= In[Jo/J]

» From theory 4+ numerics on physical quantities, infer



Decay length
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Overview

» Vary disorder realisation to induce resonances.
Avoided level crossings = resonances

» Develop theory in terms of properties of ‘standard’ LIOM
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P> Resonances as features in spectra of local evolution operators.

> ‘Locally pairwise’; eigenstates participate in ~ L resonances.

» Find small J # 0 distinct from J = 0 for e.g.
Distributions of matrix elements of local operators.

» Capture behaviour not usually considered ‘localised’.



S peCt I’al fU nCtIOH see also Gopalakrishnan et al. PRB 2015, Crowley & Chandran arXiv:2012.14393
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Spectral statistics
Two-point correlator of the level density
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