On characterizing classical and quantum entropy Arthur Parzygnat IHÉS Categorical semantics of Entropy CUNY Graduate Center ITS 5/13/2022

Information Loss
Every (non-injective) function of
probability spaces loses information.
The entropy difference

$$(X, p)$$
 The entropy difference
 (X, p) f (X, p) f (Y, q) (X, p) (Y, q) (Y, q) (Y, q) is the shannon entropy, quantifies this.
Here, $q_{g} = \sum_{x \in S^{c}} p_{x}$ is
the pushforward of p
along F, denoted fop.

Information Loss Every (non-injective) function of probability spaces loses information. $\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet$ The entropy difference $\Delta_{H}(f) \coloneqq H(p) - H(q)$, where $H(p) := -\sum_{x} P_{x} log(p_{x})$ is the Shannon entropy, quantifies this. Baez, Fritz, Leinster Characterized $\Delta_{\rm H}$ Here, $q_y = \sum_{x \in f^{-1}(xy)} P_x$ is as a continuous convex functor the pushforward of p into BIRzo (Rzo viewed as a one-object category) up to a constant > 0. along f, denoted fop.

Information Recovery

It is impossible to recover information in a deterministic manner?

Relative Entropy & Optimal Hypotheses

The relative entropy satisfies

S(pll hog) ≥ 0

s ∫ {h

Relative Entropy & Optimal Hypotheses

The relative entropy satisfies

S(pll hog) ≥ 0

f ∫ {h

S(pllhog) = 0 iff hog = p

Relative Entropy & Optimal Hypotheses

The relative entropy satisfies

f l 2h

• $S(p \parallel h \circ q) = 0$ iff $h \circ q = p$ An optimal hypothesis is a hypothesis h such that $h \circ q = p$.

Relative Entropy & Optimal Hypotheses The relative entropy satisfies • S(pllhog)≥0 S(pllhoq) = 0 iff hoq = p An optimal hypothesis is a hypothesis h s↓ ²h such that $h \circ q = p$.

<u>Fact</u> Optimal hypotheses always exist. $h_{XY} = \frac{S_{Y}f(x) P_{X}}{9y}, \quad \text{where} \quad S_{X'X} = \begin{cases} 1 & \text{if } x' = x \\ 0 & 0.w. \end{cases}$

A Category of Hypotheses The following category FinStat was constructed by Bacz and Fritz.

A Category of Hypotheses The following category FinStat was constructed by Baez and Fritz. objects: pairs (X, p), (Y, q), (Z, r) finite probability spaces

Relative Entropy as a Functor FinStat RE B[0,00] B[0,00] is the category u B[0,00] is the category with a single object and the set is [0,00] with morphism addition as the composition.

Relative Entropy as a Functor FinStat \xrightarrow{RE} $B[o,\infty]$ $B[o,\infty]$ is the category with (X, p) f(x, p)

Relative Entropy	as a Functor
FinStat RE B[0,00]	IB[0,00] is the category with
$ \begin{array}{c} (X, p) \\ f(\begin{array}{c} 3 \\ 3 \\ (Y, q) \end{array} \end{array} \longrightarrow S(p \parallel h \circ q) $	a single object and the morphism set is [0,00] with addition as the composition.
is the unique lower semi-contin	vous convex functor that
vanishes on the subcategory	FP of optimal hypotheses
(up to a non-negative const	-ant).
This is the Main theorem	m of Baez and Fritz.

Functoriality of Relative Entropy (x, p) (Y, g) (Z, r) S(p||hog) + S(g||Kor) = S(p||hokor)

hok

Functoriality of Relative Entropy

$$(Y, q) = (Y, q) = (Z, r)$$
 $S(p \parallel h \circ q) + S(q \parallel K \circ r) = S(p \parallel h \cdot K \cdot r)$
 $h \circ K$ Special case of functoriality 1:
 $(X,q) = (Y, 5 \circ q)$ $(\cdot, 1)$ $S(q \parallel q \circ f \circ q) + S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel q \circ f \circ q) + S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,

Functoriality of Relative Entropy

$$(x, p)$$
 $f(Y, q)$
 (Z, r)
 $S(p \parallel h \circ q) + S(q \parallel K \circ r) = S(p \parallel h \circ K \circ r)$
 $h \circ K$
 $Special$ case of functoriality 1:
The conditional expectation property
 $S(q \parallel q \circ f \circ q) + S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel q \circ f \circ q) + S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel q \circ f \circ q)$

Functoriality of Relative Entropy

$$(Y, q) = (Z, r)$$
 $S(p \parallel h \circ q) + S(q \parallel K \circ r) = S(p \parallel h \circ K \circ r)$
 $h \circ K$ $Special$ case of functoriality 1:
The conditional expectation property
 $S(q \parallel q \circ f \circ q) + S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel q \circ f \circ q) + S(f \circ q \parallel f \circ p) = S(q \parallel p)$ i.e.,
 $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel q \circ f \circ q)$
 $This term appears in the data-processing
inequality (DPI). Since the RHS ≥ 0 , this
is an improvement of the DPI.$

The T's one projections, while the u's are fiberwise uniform

aistributions.

A stronger DPI In our first example of functoriality, we found "given $X \xrightarrow{f} Y$ and $\xrightarrow{p} X$, set $X \xrightarrow{q} Y$ to be the optimal hypothesis, then $S(q||p) - S(foq || f \circ p) = S(q||q \circ f \circ q) \neq q$."

A stronger DPI
In our first example of functoriality, we found
"given
$$X \xrightarrow{f} Y$$
 and $\xrightarrow{f} X$, set $X \xrightarrow{f} Y$ to be the
optimal hypothesis, then $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel q \circ f \circ q) \neq q$."
More generally, what can we say if f is stochastic?

A stronger DPI
In our first example of functoriality, we found
"given
$$X \xrightarrow{f} Y$$
 and $\cdot nu \times X$, set $X \xleftarrow{f} Y$ to be the
optimal hypothesis, then $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel q \circ f \circ q) \neq q$."
More generally, what can we say if f is stochastic?
Li and Winter proved (in 2014?)
"given $X \xrightarrow{f} Y$ and $\cdot nu \times X$, set $X \xleftarrow{f} Y$ to be the Bayesian
inverse of (f, p) , then $S(q \parallel p) - S(f \circ q \parallel f \circ p) \ge S(q \parallel q \circ f \circ q) \neq q$."
A stronger DPI In our first example of functoriality, we found "given X for and only X, set X any to be the optimal hypothesis, then $S(q \parallel p) - S(f \circ q \parallel f \circ p) = S(q \parallel q \circ f \circ q) \forall q$. More generally, what can we say if f is stochastic? Li and Winter proved (in 2014?) "given Xning Y and only X, set Xning to be the Bayesian inverse of (f,p), then $S(q\|p) - S(foq\|fop) \ge S(q\|qofoq) \forall q$. Note that this implies monotonicity of relative entropy S(q || p) - S(foq || fop) ≥0, which is sometimes called the data-processing inequality (DPI).

Bayesian inverses what's this? "given X min Y and min X, set X min Y to be the Bayesian inverse of (f,p), then S(q||p)-S(foq || fop)≥S(q || gofog) ¥ q."

Bayesian inverses what's this? "given Xning Y and only X, set Xain Y to be the Bayesian inverse of (f, p), then $S(q \parallel p) - S(f \circ q \parallel f \circ p) \ge S(q \parallel q \circ f \circ q) \forall q$. Defin Given X my Y and My X, a Bayesian inverse of (F,p) is a stochastic map X and Y s.t.

Bayesian inverses what's this? "given Xning Y and only X, set Xan Y to be the Bayesian inverse of (f,p), then $S(q\|p) - S(foq\|fop) \ge S(q\|qofoq) \forall q$. Defin Given X my Y and My X, a Bayesian inverse of (f,p) is a stochastic map X and Y s.t. X entre follow Y $\Delta_{x} = \int \Delta_{y} \Delta_{y}$ X × X my X×Y from Y×Y idx×f gxidy

Bayesian inverses what's this? "given Xning Y and only X, set Xan Y to be the Bayesian inverse of (f,p), then $S(q\|p) - S(foq\|fop) \ge S(q\|qofoq) \forall q$. Defin Given X my Y and My X, a Bayesian inverse of (f,p) is a stochastic map X mm Y s.t. $X = \frac{f \circ P_{x}}{100} + \frac{f \circ P_{x}}{100} +$ ¥xeX,yeY X × X mus X × Y from Y × Y idx×f gxidy

Bayesian inverses what's this? "given Xning Y and only X, set Xan Y to be the Bayesian inverse of (f, p), then $S(q \parallel p) - S(f \circ q \parallel f \circ p) \ge S(q \parallel q \circ f \circ q) \forall q$. Defin Given X my Y and My X, a Bayesian inverse of (F,p) is a stochastic map X mm Y s.t. X and topy i.e., fyx Px = gxy (fop)y ¥xeX,yeY $\Delta x = \int \Delta y \quad \text{i.e., } P(y|x)P(x) = P(x|y)P(y)$ ¥xeX,yeY X × X ~ X × Y ~ Y × Y idx× f gxidy

Li and Winter are quantum information theorists &

Li and Winter are quantum information theorists & Why is any of this useful? Some goals/achievements since Li-Winter's work:

Enough classical stuff? Li and Winter are quantum information theorists \$ Why is any of this useful? Some goals/achievements since Li-Winter's work: - improve the DPI to get tighter bounds - extend the 2nd law of thermodynamics beyond equilibrium - discover alternatives to error-correcting codes - understand entanglement-wedge reconstruction in AdS/CFT - apply quantum into ideas to the renormalization group

- adjust Hawking's calculation to prove information conservation in black hole evaporation (formerly "the information paradox")

Classical ~ Quantum "

*-algebra of functions $C^{X} := \{X \xrightarrow{\psi} C\}$ *-algebra A space X

Classical ~ Quantum "

*-algebra of functions *-algebra \mathcal{A} $\mathcal{C}^{\times} := \{ X \xrightarrow{\mathcal{V}} \mathcal{C} \}$

space X

state Ams C

Classical a Quantum"

*-algebra of functions $C^{X} := \{X \xrightarrow{P} C\}$ *-algebra A

probability • ntmyX U

space X

expectation value $\psi \longmapsto \mathbb{E}_{p}[\psi] := \sum_{x} p_{x} \psi(x)$ $\begin{array}{c} \mathbb{C}^{Y} & \longrightarrow & \mathbb{C}^{X} \\ \mathbb{V} & \longmapsto & \mathbb{E}_{f}[\mathbb{V}] \end{array}$

state $A \xrightarrow{w} C$

(unital) positive map & Ens A

Classical a Quantum " *-algebra of functions $C^{X} := \{X \not \to C\}$ *-algebra A space X expectation value state $A \xrightarrow{w} C$

probability • ntwyX U

deterministic map $X \xrightarrow{s} Y$

 $\mathbb{C}_{\lambda} \longrightarrow \mathbb{C}_{\chi}$ $\gamma \longmapsto (\times \mapsto \mathbb{E}_{f}[\gamma])$ $\begin{array}{c} \mathbb{C}^{Y} \longrightarrow \mathbb{C}^{X} \\ Y \longmapsto \forall of (pullback) \end{array}$

 $\psi \longmapsto \mathbb{E}_{p}[\psi] := \sum_{x} p_{x} \psi(x)$

(unital) positive map B-Ens A (unital) *-homomorphism $\mathcal{B} \xrightarrow{F} \mathcal{A}$

Classical a Quantum *-algebra of functions $C^{X} := \{X \xrightarrow{\Psi} C\}$ *-algebra A space X expectation value (X Eeting C state $A \xrightarrow{w} C$ probability • ntmyXU $\psi \longmapsto \mathbb{E}_{p}[\psi] := \sum_{i=1}^{n} p_{x} \psi(x)$ $C_{\lambda} \longrightarrow C_{\chi}$ (unital) positive map B-Ens A $\gamma \longmapsto (\times \mapsto \mathbb{E}_{f}[\gamma])$ $\begin{array}{ccc} \mathbb{C}^{Y} \longrightarrow \mathbb{C}^{X} & & \\ Y \longmapsto & \forall of & (pullback) \end{array}$ (unital) *-homomorphism & F>A deterministic map $X \xrightarrow{s} Y$ hypothesis (X, p) $\xi = \omega \circ F$ $(\mathfrak{C}_{X},\mathbb{E})$ (M, ω) F(3H F (}H $\int_{S} \int_{h} \int_{Y_1q} \int_{Y_1q$ HoF=idB $(4^{\mathsf{Y}}, \mathbb{E}_q)$ (\mathcal{B}, ξ)

Classical a Quantum "

space X

*-algebra of functions $C^{X} := \{X \xrightarrow{\psi} C\}$

CY ~~~ CX

 (C^{X}, E)

F(3H

 $(\mathbf{4}^{\mathsf{Y}}, \mathbb{E}_{q})$

 $\gamma \longmapsto (\times \mapsto \mathbb{E}_{f}[\gamma])$

 $\begin{array}{ccc} \mathbb{C}^{Y} \longrightarrow \mathbb{C}^{X} \\ Y \longmapsto Y \circ f \quad (pullback) \end{array}$

Stochastic Map X ~~~ Y

expectation value $\psi \longrightarrow \mathbb{E}_{p_{x}}[\psi] := \sum_{x} p_{x} \psi(x)$

state A ~~~~ C

*-algebra 🙏

(unital) positive map & - Ens (unital) *-homomorphism **B** F A

(M, w)F (\mathcal{B}, ξ)

 $\xi = \omega \circ F$ HoF=ilB

Subtle differences in quantum

Classically, info loss $\Delta_{H}(f) = H(p) - H(q)$ associated to $(X,p) \xrightarrow{f} (Y,q)$

Į₹

is always non-negative.

Subtle differences in quantum Classically, info loss $\Delta_{H}(f) = H(p) - H(q)$ associated to $(X,p) \xrightarrow{f} (Y,q)$ \ |₹ is always non-negative. Baez-Fritz-Leinster's proof relied this

Subtle differences in quantum Classically, info loss In quantum, $\Delta_{H}(f) = H(p) - H(q)$ $\Delta_{H}(F) = H(\omega) - H(\xi)$ associated to $(X,p) \xrightarrow{f} (Y,q)$ associated to $(B, \overline{F}) \xrightarrow{F} (A, \omega)$ \} } is always non-negative. need not have a definite sign. Baez-Fritz-Leinster's proof relied this

Subtle	differences in quantum
•	Classically, info loss In quantum,
	$\Delta_{H}(f) = H(p) - H(q) \qquad \Delta_{H}(F) = H(\omega) - H(f)$
	as so ciated to $(X_{,p}) \xrightarrow{f} (Y_{,q})$ associated to $(B, \overline{f}) \xrightarrow{F} (A, w)$
	is always non-negative. need not have a definite sign. Baez-Fritz-Leinster's proof relied this ?
•	Classically, optimal
5 J Zh	hypotheses always exist.

.

Subtle	differences in quantum
•	Classically, info loss In quantum,
	$\Delta_{H}(F) = H(p) - H(q) \qquad \Delta_{H}(F) = H(\omega) - H(F)$
	as so ciated to $(X,p) \xrightarrow{f} (Y,q)$ associated to $(B,\overline{f}) \xrightarrow{F} (A,w)$
	is always non-negative. need not have a definite sign. Baez-Fritz-Leinster's proof relied this ?
•	Classically, optimal In grantum, optimal
5 ² h	hypotheses always exist. hypotheses don't always exist

Subtle	differences in quantum
•	Classically, info loss In quantum,
	$\Delta_{H}(f) = H(p) - H(q) \qquad \Delta_{H}(F) = H(\omega) - H(f)$
)t	as so ciated to $(X,p) \xrightarrow{f} (Y,q)$ associated to $(B,\overline{f}) \xrightarrow{F} (A,w)$
	is always non-negative. need not have a definite sign. Baez-Fritz-Leinster's proof relied this ?
•	Classically, optimal In guartum, optimal
5↓ ² h	hypotheses always exist. hypotheses don't always exist. <u>Fact</u> : Given $(\mathcal{B}, \xi) \xrightarrow{F} (\mathcal{A}, w)$, if an optimal
	hypothesis exists, then $\Delta_{H}(F) \ge 0$.

Subtle	differences in quantum
•	Classically, info loss In quantum,
	$\Delta_{H}(\xi) = H(p) - H(q) \qquad \Delta_{H}(F) = H(\omega) - H(\xi)$
	as so ciated to $(X,p) \xrightarrow{f} (Y,q)$ associated to $(B,\overline{f}) \xrightarrow{F} (A,w)$
V	is always non-negative. need not have a definite sign.
	Baez-Fritz-Leinster's proof relied this
•	Classically, optimal In guartum, optimal
	hypotheses always exist. hypotheses don't always exist.
5 (E h	<u>Fact</u> : Given $(B,\xi) \xrightarrow{F} (A,w)$, if an optimal
	hypothesis exists, then $\Delta_{H}(F) \ge 0$.
see my talk @ {	This was one of the key observations in
V. Yanofsky's seminar	extending Baez-Fritz-Leinster's Theorem to quantum.

Quantum Relative Entropy Defining NCFin Stat (non commutative) via

Quantum Relative Entropy Defining NCFinStat (non commutative) via objects: pairs (A,w), (B,5), (C,5) of non-commutative probability spaces

Quantum Relative Entropy Defining NCFin Stat (non commutative) via of non-commutative probability spaces objects: pairs (A,w), (B,5), (C,5) morphisms: $(A, \omega) \xrightarrow{F} (B, \overline{E})$ F = deter $\overline{E} = \omega \cdot F$ F = deterministic H.F= idB NC Fin Stat RE B[0,00] also defines a convex functor (\mathcal{A}, ω) $F(^{1}_{2}H) \longrightarrow S(\omega || \mathbf{5} \cdot \mathbf{H})$ $(\mathcal{B}, \mathbf{5})$

Quantum Relative Entropy Defining NCFin Stat (non commutative) via objects: pairs (A,w), (B,5), (C,5) of non-commutative probability spaces morphisms: (A, w) (B, E) F = deterministic $\mathbf{F} = \mathbf{w} \cdot \mathbf{F}$ H.F= idB NC Fin Stat RE B[0,00] also defines a convex functor (Α,ω) F('___3H (Β, ૬) (at least, I checked this when → S(ω||ξ•H) the states satisfy appropriate support conditions).

Quantum Relative Entropy Defining NCFin Stat (non commutative) via objects: pairs (A,w), (B,5), (C,5) of non-commutative probability spaces vnorphisms: $(A, \omega) \xrightarrow{F} (B, \Sigma)$ F = deterministic $\mathbf{F} = \mathbf{w} \mathbf{e} \mathbf{F}$ H.F = idB NC Fin Stat \xrightarrow{RE} $B[0,\infty]$ also defines a convex functor (Λ,ω) F(¹, ³₂H (at least, I checked this when → S(ω||ξ•H) the states satisfy appropriate (\mathcal{B}, ξ) support conditions). 1) functoriality for all states 2) lower semi-continuity In progress: 3) characterization

Properties of RE Functoriality specializes to
Functoriality specializes to - The conditional expectation property (originally due to Petz)

Functoriality specializes to - The conditional expectation property (originally due to Petz) - The chain rule for quantum conditional entropy

Functoriality specializes to - The conditional expectation property (originally due to Petz) - The chain rule for quantum conditional entropy But, the Li-Winter strengthened DPI fails. Namely, "Given Bring A and Aring C, there exists a $\mathcal{B} \leftarrow \mathcal{A} \quad s.t. \quad S(\boldsymbol{\xi} \| \boldsymbol{\omega}) - S(\boldsymbol{\xi} \cdot \boldsymbol{F} \| \boldsymbol{\omega} \cdot \boldsymbol{F}) \geqslant S(\boldsymbol{\xi} \| \boldsymbol{\xi} \cdot \boldsymbol{F} \cdot \boldsymbol{G}) \quad \forall \boldsymbol{\xi}''$ is false.

Functoriality specializes to - The conditional expectation property (originally due to Petz) - The chain rule for quantum conditional entropy But, the Li-Winter strengthened DPI fails. Namely, "Given Bring A and Aring C, there exists a $\mathcal{B} \leftarrow \mathcal{A} \quad s.t. \quad S(\xi \| w) - S(\xi \cdot F \| w \cdot F) \geqslant S(\xi \| \xi \cdot F \cdot G) \quad \forall \xi''$ is false. Variants and weaker versions have been found.

Functoriality specializes to - The conditional expectation property (originally due to Petz) - The chain rule for quantum conditional entropy But, the Li-Winter strengthened DPI fails. Namely, "Given Bring A and Aring C, there exists a $\mathcal{B} \leftarrow \mathcal{A} \quad s.t. \quad S(\overline{s} \| \omega) - S(\overline{s} \cdot F \| \omega \cdot F) \gg S(\overline{s} \| \overline{s} \cdot F \cdot G) \quad \forall \overline{s}''$ is false. Variants and weaker versions have been found. In progress: Is it true when a Bayesian inverse exists? AOA « AOB ~ BOB id AOF AOB ~ BOB

Categorical approaches to entropy Classical Quantum

Categorical approaches to entropy

Quantum

Shawnon entropy Baez-Fritz-Leinster

Categorical approaches to entropy

Quantum

Shaunon entropy Baez-Fritz-Leinster

von Neumann entropy Parzygnat

Categorical approaches to entropy

Classical

Quantum

Shaunon entropy Baez-Fritz-Leinster

Conditional entropy Fullwood - Parzygnat

von Neumann entropy Parzygnat

Categorical approaches to entropy

Quantum

Shawnon entropy Baez-Fritz-Leinster

Conditional entropy Fullwood - Parzygnat

von Neumann entropy Parzygnat Conditional entropy In progress

Categorical approaches to entropy

Quantum

Shawnon entropy Baez-Fritz-Leinster

Conditional entropy Fullwood - Parzygnat

Relative entropy Bazz-Fritz Gagné-Panangaden

von Neumann entropy Parzygnat Conditional entropy In progress

Categorical approaches to entropy

Quantum

Shawnon entropy Baez-Fritz-Leinster Conditional entropy Fullwood - Parzygnat Relative entropy Baez-Fritz Gagné-Panangaden

von Neumann entropy Parzygnat Conditional entropy In progress Relative entropy In progress, but partial results Infinite-dim'l generalizations unknown

Categorical approaches to entropy

Classical

Shaunon entropy Baez-Fritz-Leinster

Conditional entropy Fullwood - Parzygnat Relative entropy Baez-Fritz Gagné-Panangaden

Quantum

von Neumann entropy Parzygnat Conditional entropy In progress

Relative entropy In progress, but partial results

Infinite-dim'l generalizations unknown

Also homological, operadic, topos-theoretic Characterizations of some of these exist.

Categorical approaches to entropy

Classical

Shaunon entropy Baez-Fritz-Leinster

Conditional entropy Fullwood - Parzygnat Relative entropy Baez-Fritz Gagné-Panangaden

Quantum Also homological, von Neumann entropy Parzygnat operadic, topos-theoretic Conditional entropy In progress Characterizations of some of these exist. Relative entropy In progress, but partial results Infinite-dim'l generalizations unknown

of these different approaches? what connects all

Thank you?

References arXiv: 1106.1791 [cs.IT] - Shannon entropy J. Baez, T. Fritz, T. Leinster J. Baez and T. Fritz arXiv: 1410.4184 [quant-ph] Data-processing frecovery K. Li and A. Winter A. Parzygnat and B. Russo arXiv:1907.09689 [quant-ph] - Disintegrations arXiv:2001.08375 [quant-ph] - Quantum Markov cats A. Parzygnat ar Xiv: 2005.03886 [quant-ph] ~ Quantum Bayesian inverses A. Parzygnat and B. Russo arXiv: 2009.07125 [quant-ph] ~ von Neumann entropy A. Parzygnat arXiv: 2105.04059 [quant-ph] ~ Relative entropy A. Parzygnat