
On characterizing classical
and quantum entropy
Arthur Parzygnat IHÉS

Categorical semantics of Entropy
CUNY Graduate Center ITS

5/13/2022



Information Loss
:D Every (non-injective ) function of

⑥ @

probability spaces loses information
.?⃝

☒ ①

↓
o e



Information Loss
:D Every (non-injective ) function of

probability spaces loses information
.☒

☒ ?⃝
(X
, p)

the entropy difference

☐Hlf) := Hlp) - Hlq ) , where
f↓ ✓ HIM := -[ pxtoglpx)

@ (Yjq )
is the Shannon entropy , quantifies this .

Here , qy=I
✗ c- f-Y{y%✗

is

the pushforward of p

along f. denoted top .



Information Loss
:D Every (non-injective ) function of

probability spaces loses information
.?⃝

☒ ?⃝
(X
, p)

the entropy difference

D.Hlf) := Hlp) - Hlq ) , where
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@ (Yjq )
is the Shannon entropy , quantifies this .
Baez , Fritz , Leinster characterized AH

Here , qy=Ip✗ is

✗ c- f-
' ({y})

as a continuous convex functor

the pushforward of p into BIR
≥o ( IR

≥o
viewed as a

along f. denoted top . one - object category ) up to a constant ≥o.
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Information Recovery
It is impossible to recover

information in a deterministic manner¥

?⃝ But we can try using a stochastic

procedure 4-mknix
.☒ ⑨

Notation÷e!.↓ h assigns a probability distribution

hy on * to each
y

c- Y
.

the value on ✗ c- X is written hxy .
Compare to IP /✗ ly ) the
conditional probability of ✗ given g.
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Hypotheses = stochastic sections
← hxyqy
✗

the push forward

f of q along h

hypothesis is denoted hog .

↓f ↑h
h¥f

Water droplet picture & Y→Y
idyon left due to Gromov
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Relative Entropy of Recovery
←lhoqlx But hypotheses are not always✗

Tpx correct . To quantify the
accuracy

*
, p)

of a hypothesis h
,
we use

the relative entropy
(of
recovery )

f↓↑h tf % slpllhoqt-ER.bg/Yn:qk)
(Yg) [ =%p×log( n " )xfcxifflxl

Warning
: This notation is misleading . h is sometimes called

we require q=f◦p but Np=h°q¥
a recovery map
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Relative Entropy 4 Optimal Hypotheses
The relative entropy satisfies

• Slpllhoq ) ≥ 0
• Slpllhoq)=0 iff hog =p

An optimal hypothesis is a hypothesis h

such that hog =p .

f↓↑h Fact optimal hypotheses always exist .

hxy =
{
Jfk' Px where [

×,×={ 1 if ✗
'

=×

qy
'

0 O.w.
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A category of Hypotheses
the following category FinStat was constructed by Baez and Fritz

.

Objects : pairs (Yp ) , (Yg ) , (Z,r ) finite probability spaces

morphisms : (Yp )
↳

(Yg )
f = deterministic

(But N )q
= foprunner p=h°q

h foh = idy

composition:(×;pÉiz,,
knw

trhhhnndmnnnnhrd Chok)×z:=%h×yKyzhook
Chapman - Kolmogorov
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Relative Entropy as a functor
Finstat 11310,00] 11310,0] is the category with

(X,p) a single object and the

ff { h '→ s(pHh°q ) morphism set is 6,0] with

(Yg) addition as the composition .

is the unique lower semi-continuous convex functor that

vanishes on the subcategory FP of optimal hypotheses
(up to a non- negative constant ) .

This is the main theorem of Baez and Fritz.
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Functoriality of Relative Entropy
(×;pÉÑz,r ) slpllhcoql + Slqllkoor ) = Slpllhokor )
Mr jur"ʰhfF/

Special case of functionality 1 :

The conditional expectation property
1.*

Slqllgofoq) + Slfoqllfop ) = Slqllp) i.e. ,

*
,

, sÉz = Slqllgofoq )
this term appears in the data

-

processing↑r←ᵈ%¥?¥÷ÉYÉhm±l
arbitrary inequality (DPI) . Since the RHS ≥ 0, this

p
← fixed

is an improvement of the DPI .



Functoriality of Relative Entropy
Special case of functionality 2 :

a-¥17
The it's one projections , while

the u 's are fiberwise uniform

*xY✗Z,p*±ÉpÉÑpz) distributions .

Tmrw Fun

FUYF-yz.tl?Zmm)UI-yz



Functoriality of Relative Entropy
Special case of functionality 2 :

a-¥17
The it's one projections , while

the u 's are fiberwise uniform

*xY✗Z,p*±ÉpÉÑpz) distributions .

Runner Fmr YXZ
For example

FUYF-yz.tl?z-mm)tiEfJu7zUF-yz
Z



Functoriality of Relative Entropy
Special case of functionality 2 :

a-¥17
The it's one projections , while

the u 's are fiberwise uniform

4-×Y✗Z,p*¥Ép¥Ñpz) distributions .

Runner Fhm YXZ
For example

FUYF-yz.tl?Zmm)tiEfJuIzUF-yz
Z

slpx-yzHU-E-y-zop.cz) + slpyz.HU?czopz)--S(p*yzHuIfZopz)



Functoriality of Relative Entropy
Special case of functionality 2 :

a-¥17
The it's one projections , while

the u 's are fiberwise uniform

4-×Y✗Z,p*¥Ép¥Ñpz) distributions .

Runner Fmr YXZ
For example

FUYF-yz.tl?zmw/tiEfJu7zUI-yz
Z

slpx-yzHU-E-y-zop.cz) +slpyz.HU?czopz)--S(p*yzHuIfZopz)-HlX-lY-Z)tloglX-l-HlY-lZ11-log /YI = -1-11×-412-1 + log /✗✗YI



Functoriality of Relative Entropy
Special case of functionality 2 : chain rule for conditional entropy

a-¥17
The it's one projections , while

the u 's are fiberwise uniform

4-×Y✗Z,p*¥Ép¥Épz) distributions .

Runner Fhm YXZ
For example

FUYF-yz.tl?Zmw/tiEfJu7zUI-yz
Z

slpx-yzHU-E-y-zop.cz) +slpyz.HU?czopz)--S(p*yzHuIfZopz)-HlX-lY-Z)tloglX-l-HlY-lZl1-log /YI = -1-11×-412-1 + log /✗✗YI

[Ref cover -Thomas] HIXTYZ ) + HIYIZ ) = HIYYIZ )
Eqn (2-21)
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"

given X
f
>Y and • In> *

,
set ☒←ʰY to be the

optimal hypothesis , then Slqllp ) - Slfoqllfop )=S( qllgofoq ) Hq.
"

More generally , what can we say if f is stochastic ?

Li and winter proved ( in 2014¥ )
"

given XÑm>Y and • In> *
,
set ☒←ʰY to be the Bayesian

inverse of Cfp) , then Slqllp ) - Slfoqllfop ) ≥ Slqllgofoq ) Hq.
"

Note that this implies monotonicity of relative entropy
Slqllp) - Slfoqllfop ) 70 ,

which is sometimes called the data - processing inequality CDPII .
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Bayesian inverses what's this?z
"

given Krim>Y and • In> *
,
set ☒←ʰY to be the Bayesian

inverse of Cfp) , then Slqllp ) - slfoqllf.pl?SCqllgofoq)V-q.
"

Dein Given ✗rim>Y and • In> *
,
a Bayesian inverse of If,p)

is a stochastic map ✗
←ʰY s .-1 .

☒←É • rÉPusY i.e., fyxpx = gxylfoply t×EXTyeY
☐ = ↓☐Y i.e

, Plylxllplx) = Plxlyllply )V-xc-X-iyc-YX-xx-rnrix-xy-cmry-xY.io
#
✗ f gxidy.

Theorem • If f is deterministic and
g is a Bayesian

inverse of If
,p) , then g is an optimal hypothesis .

• If
g

is an optimal hypothesis, then g is a

Bayesian inverse and f is necessarily deterministic .
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Enough classical stuff

Li and Winter are quantum information theorists ¥

Why is any
of this useful ?

Some goals /achievements since Li - Winter 's work :

- improve the DPI to get tighter bounds

- extend the 2ⁿᵈ law of thermodynamics beyond equilibrium
- discover alternatives to error-correcting codes

- understand entanglement - wedge reconstruction in Ads /CFT

- apply quantum info ideas to the renormalization group
-

adjust Hawking 's calculation to prove information conservation

in black hole evaporation ( formerly
"the information paradox

" )
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Subtle differences in quantum
classically , info loss In quantum ,

salt ) = Hlp) - Hlql SHIFT = Hlwl - 1-1151

associated to (X,pÑlYiq ) associated to (B.3) F- (Ain)
↓f

is always non - negative . need not have a definite sign .
Baez - Fritz - Leinster 's proof relied this ?

Classically , optimal In quantum , optimal

hypotheses always exist . hypotheses don't always exist .
Fact : Given ID

,
} )#A,w) , if an optimalf↓↑h

hypothesis exists
,
then bµ(F) 70 .

See
my
talk @ This was one of the key observations in

N
. Yanofsky 's seminar/ extending Baez - Fritz- Leinster 's Theorem to quantum .



Quantum Relative Entropy
Defining NC Fin Stat ( noncommutative ) via



Quantum Relative Entropy
Defining NC Fin Stat ( noncommutative ) via

objects : pairs CA,w1 , (Dis ) , ④5) of non-commutative probability spaces



Quantum Relative Entropy
Defining NC Fin Stat ( noncommutative ) via

objects : pairs CA,wl , (Dis ) , ④5) of non-commutative probability spaces
F = deterministic

morphisms : IA,w)D, } ) es = wot
TF

H°F= id@



Quantum Relative Entropy
Defining NC Fin Stat ( noncommutative ) via

objects : pairs CA,wl , (Dis ) , ④5) of non-commutative probability spaces
F = deterministic

morphisms : IA,wÉ(D, } ) es = wot
TF

H°F= id@

NC Fin Stat ¥911310,00] also defines a convex functor

(Ain)
5- ↑ { H - S(wH5°H )

ID
,
} )



Quantum Relative Entropy
Defining NC Fin Stat ( noncommutative ) via

objects : pairs CA,wl , (Dis ) , ④5) of non-commutative probability spaces
F = deterministic

morphisms:(A,w)D, } ) es = wot
TF

H°F= id@

NC Fin Stat ¥911310,00] also defines a convex functor

(Ain)
F- ↑ { H - S(wH5°H )

(at least
, I checked this when

the states satisfy appropriateID
,
} )

support conditions) .



Quantum Relative Entropy
Defining NC Fin Stat ( noncommutative ) via

objects : pairs CA,w1 , (Dis ) , ④5) of non-commutative probability spaces
F = deterministic

morphisms : IA,wÉ(D, } ) es = wot
TF

H°F= id@

NC Fin Stat ¥911310,00] also defines a convex functor

(A,w) (at least
, I checked this when

5- ↑ { H - S(wH5°H )
the states satisfy appropriateID

,
} )

support conditions) .

In progress
: 1) functionality for all states

2) lower semi - continuity
3) characterization
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properties of RE
Functionality specializes to

- the conditional expectation property (originally due to Petz)

- The chain rule for quantum conditional entropy
But

,
the Li - Winter strengthened DPI fails

. Namely ,

"

Given Bren>A and Anise
,
there exists a

DEA s.t.SK/lw)-Sl5oFHwoF17Sl5ll5oFoG)-V5
"

is false . Variants and weaker versions have been found .

In progress
: Is it true when a Bayesian inverse exists ?

Such a map is defined by A Ins ¢ D

{mutt = mutt}
A☒A←mA⊕Dnm>B⊕B

ida⊕F G⊕ido
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Categorical approaches to entropy
Classical Quantum Also homological ,

Shannon entropy von Neumann entropy operatic ,
Baez - Fritz- Leinster Parzygnat

topos - theoretic
conditional entropy conditional entropy
Fullwood- Parzygnat In progress characterizations of

Relative entropy Relative entropy some of these exist
.

Baez-Fritz

Gagne
'
- Panangaden

In progress , but
partial results

Infinite - dim'd generalizations unknown

what connects all of these different approaches ?



Thank you ?⃝
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