TAKING ARMS AGAINST A SEA OF TROUBLES

Dries Sels NYU-Flatiron

Mohit Pandey (BU)
Pieter W. Claeys (Cambridge)
David K. Campbell (BU)
Tyler LeBlond (PennState)
Marcos Rigol (PennState)
Anatoli Polkovnikov (BU)

Phys. Rev. X 10, 041017 (2020)
arXiv:2009.04501

arXiv:2012.07849

arXiv:2105.09348
arXiv:2108.10796

Part 1: Susceptibility disordered XXZ chain

- Fidelity susceptibility:

$$
\chi_{n}(\lambda)=\sum_{m \neq n} \frac{\left.\left|\langle m| \partial_{\lambda} H\right| n\right\rangle\left.\right|^{2}}{\left(E_{m}-E_{n}\right)^{2}}
$$

- Typical because of resonances $\bar{\chi}=\exp (\mathbb{E}[\log (\chi)])$
- Data scaled to ETH expectation
- W<0.5 perfect ETH
- W>>10 perturbative $\bar{\chi}=W^{-8 / 3}$

Susceptibility distribution

Distribution: $P(z)=\exp \left(-z \frac{1+\beta}{2+\alpha}\right)$, with: $z=\log [\chi]$ Level spacing: $P(s)=s^{\beta}$

Spectral function: $|f(\omega)|^{2}=\frac{1}{\omega^{\alpha}}$

$$
\chi_{n}(\lambda)=\sum_{m \neq n} \frac{\left.\left|\langle m| \partial_{\lambda} H\right| n\right\rangle\left.\right|^{2}}{\left(E_{m}-E_{n}\right)^{2}}
$$

Anderson Insulator

- Hamiltonian

$$
H=\sum_{i}\left(S_{i}^{x} S_{i+1}^{x}+S_{i}^{y} S_{i+1}^{y}+\Delta S_{i}^{z} S_{i+1}^{z}\right)+\sum_{i} h_{i} S_{i}^{z}
$$

with $h_{i} \in[-W, W], \mathrm{W}=0.6$ and we change Δ

- Robust ETH regime
- Clear scaling

$$
\bar{\chi} \sim \omega_{H}^{-2}
$$

- Fast drift of the peak: consistent with exponential
- $1 / \omega^{2}$ spectral function: consistent with
Fermi's golden rule

Part 2: Impurity problem

- Just one impurity
- Onset of "ergodicity breaking" when impurity starts to freeze
- FGR rate reaches level spacing

$$
\Gamma_{F G R} \sim e^{-c V \log V}
$$

- Define effective model by Schrieffer-Wolff out impurity
- Ergodicity really gets broken when blocks
 decouple

Susceptibility impurity

Full model

Effective model

High frequency spectral function

How do extra impurity affect the spectral function?

Part 3: Avalanches with infinity bath Anderson Insulator

Avalanches with infinity bath Disordered Heisenberg model

Avalanches with infinity bath

Power law?

Avalanches with infinity bath

Absence of I-bits

$\Gamma \sim \frac{C_{L}}{W^{2(L-1)}}$

Conclusion

- Enhanced susceptibility when system breaks ergodicity
- Contraints transition scenarios
- Impurity model elucidates difference between ergodicity breaking and freezing of the impurity
- Any finite density is ergodic in thermodynamic limit
- Previous deep MBL regime still has avalanches for disorder O(20) in small systems
- We see indication for absence of l-bits

