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Part 1: Susceptibility disordered XXZ 
chain

• Fidelity susceptibility: 

• Typical because of  
resonances 

• Data scaled to ETH 
expectation  

• W<0.5 perfect ETH 
• W>>10 perturbative
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L = (12, 14, 16, 18)
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Susceptibility distribution
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Distribution: ,with:

Level spacing:

Spectral function:



• Hamiltonian 

with                       , W=0.6 and we change             

Anderson Insulator
<latexit sha1_base64="mymYMcuNxV95RWo4soMLxJ6l/TU="></latexit>

H =
X

i

�
S
x
i S

x
i+1 + S

y
i S

y
i+1 +�S

z
i S

z
i+1

�
+

X

i

hiS
z
i

<latexit sha1_base64="lkL6gEfFrbkY3eSORbCQAY37Ypo=">AAAB9XicbVBNS8NAEJ3Ur1q/oh69LBbBg5ZEFD1JwYvHCrYppLFstpt26WYTdjdKCf0fXjwo4tX/4s1/47bNQVsfDDzem2FmXphyprTjfFulpeWV1bXyemVjc2t7x97da6kkk4Q2ScIT2Q6xopwJ2tRMc9pOJcVxyKkXDm8mvvdIpWKJuNejlAYx7gsWMYK1kR4GXYY6TCD/1Dvxgq5ddWrOFGiRuAWpQoFG1/7q9BKSxVRowrFSvuukOsix1IxwOq50MkVTTIa4T31DBY6pCvLp1WN0ZJQeihJpSmg0VX9P5DhWahSHpjPGeqDmvYn4n+dnOroKcibSTFNBZouijCOdoEkEqMckJZqPDMFEMnMrIgMsMdEmqIoJwZ1/eZG0zmruRc25O6/Wr4s4ynAAh3AMLlxCHW6hAU0gIOEZXuHNerJerHfrY9ZasoqZffgD6/MH05uRaA==</latexit>

hi 2 [�W,W ]
<latexit sha1_base64="GZyM9PLPOEolz02DrkmOWrhmn2A=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSSi6EkKevBYwX5AG8pmu2nXbnbD7kQoof/BiwdFvPp/vPlv3LY5aOuDgcd7M8zMCxPBDXret1NYWV1b3yhulra2d3b3yvsHTaNSTVmDKqF0OySGCS5ZAzkK1k40I3EoWCsc3Uz91hPThiv5gOOEBTEZSB5xStBKze4tE0h65YpX9WZwl4mfkwrkqPfKX92+omnMJFJBjOn4XoJBRjRyKtik1E0NSwgdkQHrWCpJzEyQza6duCdW6buR0rYkujP190RGYmPGcWg7Y4JDs+hNxf+8TorRVZBxmaTIJJ0vilLhonKnr7t9rhlFMbaEUM3trS4dEk0o2oBKNgR/8eVl0jyr+hdV7/68UrvO4yjCERzDKfhwCTW4gzo0gMIjPMMrvDnKeXHenY95a8HJZw7hD5zPH2Cqjvw=</latexit>

�

10-4

10-3

10-2

10-1

100

101

D
(w

H
)2 c

ty
p/L

10-4 10-3wH

103

104

105

c ty
p

wH
-1.88

10-3 10-2 10-1 100 101

D

10-3

10-2

10-1

100

D
(w

H
)2 c

ty
p/L

L = 15
L = 16
L = 17
L = 18

103

104

105

wH
-1.90

10-4 10-3wH

10-1

D
*

wH
0.3

10-1

(a) Kn

(b) Un

*

• Robust ETH regime 
• Clear scaling 

• Fast drift of the peak: 
consistent with  
exponential 

• 1/ω2 spectral function: 
consistent with  
Fermi’s golden rule 
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Part 2: Impurity problem
2
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FIG. 1. Level spacing statistics: Mean ratio of energy
level spacings ÈrÍ as a function of the impurity potential for
Heisenberg chains of length L = 13, 15, 17 (red, blue, green)
with a single impurity on the central site (black lines with
circles). The dashed-dotted lines show the level spacing ra-
tio ÈrÍ for the e�ective model where the impurity has been
frozen and right-left side of the chain only interact through
a virtual process involving the impurity. The full lines result
from folding the spectrum of the e�ective model, resulting
from the two possible energies associated with the conserved
charge of the impurity.

where L is the chain size which we choose to be odd [14].
In contrast to earlier works, which studied the integra-
bility breaking of the XXZ model by introducing a small
local impurity [15], we’d like to understand the behavior
of the system for very strong impurity potentials V . It
is expected that the system will thermalize in the ther-
modynamic limit at any finite V [16–18]. Here we will
analyze in detail when and how the impurity charge lo-
calizes at su�ciently large V and how this localization
a�ects the ergodicity of the rest of the chain. This ques-
tion has recently also been addressed by Chandran and
Crowley in a related but somewhat di�erent setup [19].

To get an overall picture of the ergodicity breaking
transition we look into the spectral properties of the sys-
tem. Fig. 1 shows the mean ratio of energy level statistics
as a function of the impurity potential for three di�er-
ent short chains of length L = 13, 15, 17. Given sub-
sequent energy level spacings sn = En+1 ≠ En, with
H =

q
n En |nÍ Èn|, this ratio is defined as

rn = min(sn, sn+1)
max(sn, sn+1) . (5)

For non-ergodic systems and Poissonian level statistics,
the average over eigenstates ÈrÍ ¥ 0.386, whereas for
chaotic systems with GOE statistics ÈrÍ ¥ 0.5307 [20].

At su�ciently small impurity potential V , the system is
observed to be ergodic, as expected. Upon increasing the
potential V , ergodicity gets broken in a seemingly two-
step way. First, there is a fast drop in ÈrÍ, followed by
a much slower further decrease of the level spacing ratio
to the Poissonian value. Furthermore, the required V
for the initial deviation from the GOE value shifts sig-
nificantly with system size L. As we discuss below this
initial drop is caused by localization of the impurity hap-
pening at extensive (up to log corrections) V ú Ã L, while
the further slow decay is a consequence of the resulting
fragmentation of the chain, which occurs at much larger
potential V úú Ã 2L/2. So there is a parametrically large
window V ú π V π V úú where the impurity is localized
and yet the rest of the system is ergodic. Thus this model
is a specific example of a system with a parametrically
large di�erence between the potentials required to local-
ize the impurity spin and to fragment the Fock space into
several (three for our setup) disconnected sectors [21, 22].

To understand the emergence of the asymptotic be-
havior of ÈrÍ at large V , we introduce an e�ective spin
model where the impurity spin is integrated out via a
Schrie�er-Wol� transformation [23]. The latter e�ec-
tively freezes the impurity spin in either the up or down
localized state and introduces an e�ective coupling be-
tween the two boundary spins adjacent to the impu-
rity. The corresponding transformed Hamiltonian, up to
O(1/V 2) terms, reads:

H̃ =
5
HL + Sz

¸≠1

3
1

4V
+ �Sz

¸

46

+
5
HR + Sz

¸+1

3
1

4V
+ �Sz

¸

46

+
3

V ≠ 1
2V

4
Sz

¸ + 1
V

Sz
¸

!
Sx

¸≠1Sx
¸+1 + Sy

¸≠1Sy
¸+1,

"
, (6)

where HL,R denotes the bare Hamiltonian (1) restricted
to the left and right side of the impurity respectively.
By construction, the Hamiltonian is still diagonal in the
impurity spin and one can thus consider the two sectors
with Sz

0 = ±1/2 independently.
This transformed Hamiltonian can be obtained in two

di�erent ways: i) either by performing a standard uni-
tary rotation, which perturbatively removes the coupling
between the impurity and the rest of the spins:

H̃ = eiAHe≠iA, (7)

where

A = Sy
¸

3
1
V

!
Sx

¸≠1 + Sx
¸+1

"
≠ i

V 2 [
!
Sy

¸≠1 + Sy
¸+1

"
, H]
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+ Sx
¸

3
≠1
V

!
Sy

¸≠1 + Sy
¸+1

"
≠ i

V 2 [
!
Sx

¸≠1 + Sx
¸+1

"
, H]

4

+ O(V ≠3). (8)

• Just one impurity 
• Onset of “ergodicity 

breaking” when impurity 
starts to freeze 
• FGR rate reaches level 

spacing 

• Define effective model by 
Schrieffer-Wolff out 
impurity 
• Ergodicity really gets 

broken when blocks 
decouple
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FIG. 2. Typical Fidelity susceptibility: Panels A and B
show the typical fidelity susceptibility scaled by its value in
the absence of an impurity, i.e. at V = 0. Di�erent system
sizes L = 13, 15, 17 are shown in red,blue,green respectively.
In addition we show L = 14, 16 in yellow and green. Panel
(A) corresponds to the susceptibility of a bulk spin in the full
model, whereas panel (B) shows the susceptibility of the same
spin in the e�ective model. The insets in panels (A)/(B) show
the scaling of the peak position with system size, together
with the best linear/exponential fit. Physical system sizes
corresponding to the full and e�ective models shown in the
same color are identical, but the as the impurity spin in the
e�ective model is frozen its actual system size is reduced by
one.

more, we observe a peak in the susceptibility, indicating
ergodicity breaking in the e�ective model. However, this
time the peak develops much slower and as such appears
to drift much faster with the system size. Again, the
peak happens at a rather high value of ÈrÍ, where there
is still a considerable di�erence in ÈrÍ between the folded

and unfolded models. The inset shows the drift of the
peak position on a log-scale with the best fit. This drift
is well approximated with a linear curve, indicating this
time that the critical interaction needed to decouple the
e�ective model into the independent left and right blocks
scales exponentially with L. The standard expectation,
following from many-body perturbation theory, is that
the strength of the e�ective hopping Je� = 1/(2V ) cou-
pling two blocks of length L/2 su�cient for thermaliza-
tion scales as Je� ≥ exp[≠S(L)/2] = 2≠L/2 [19, 25, 29].
Mathematically, this criterion comes from requiring con-
vergence of the leading perturbative correction to eigen-
states and an assumption that the spectral function of
the perturbation ˆ⁄H is flat at small frequencies. As
we check below (see the inset in Fig. 4) the latter as-
sumption is indeed correct. This criterion would predict
that V ú Ã exp[L log(2)/2] ¥ exp[0.35L], which gives a
somewhat larger slope than that in the inset of Fig. 2
(B). The discrepancy could be due to small system sizes
leading to the small dynamical range and/or relevance of
various log(L) corrections a�ecting the observed scaling.
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FIG. 3. Impurity spectrum: For impurity potentials rang-
ing from V = 1 to V = 8, the spectral function of the impu-
rity is shown from blue to red in a system of L = 17 spins.
Dashed lines are guides for the eye and indicate 1/Ê2 scaling.
The inset shows 1 ≠ Z, where Z = 4E[Èn|Sz

0 |nÍ2] with the
expectation over all eigenstates and realizations of the weak
disorder.

Exponential enhancement of the fidelity susceptibility
implies an exponential (in L) enhancement of spectral
weight at low frequency from O(1) to O(exp(S(L))), ac-
companied by exponentially slow (in L) relaxation [15,
26]. To confirm that this is the case it is thus instructive
to look directly at the spectral function of the impurity.
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Exponential enhancement of the fidelity susceptibility
implies an exponential (in L) enhancement of spectral
weight at low frequency from O(1) to O(exp(S(L))), ac-
companied by exponentially slow (in L) relaxation [15,
26]. To confirm that this is the case it is thus instructive
to look directly at the spectral function of the impurity.
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finite impurity potential V for a finite impurity density:

Vj =
ÿ

k

Vk”jk, (17)

where {k} is a subset of sites where impurities are lo-
cated and Vk are uniformly distributed in the interval
[V/2, 3V/2]. We consider di�erent subsets of impurity
sites to make sure that the results are not fine-tuned
to a particular arrangement. We also allow impurities
strengths to fluctuate around mean value of V to avoid
dealing with any potential resonances.

We will reverse the order in which we present the data
as compared to the single impurity case and start with
asking a question about energy absorption by the system
at its boundary in the rotating frame of the adjacent im-
purity. In other words, we want to understand how the
presence of multiple impurities a�ects the spectrum of
the boundary spins shown in Fig. 4. If the system is lo-
calized then the spectral function should vanish at Ê Ø V
for a su�ciently large V . This would ensure that the
FGR rate for impurity relaxation is zero. Conversely a
finite spectral weight at any (non-extensive) V indicates
delocalization of the impurities. Clearly, when focusing
on a single impurity, the rest of the system acts as the
worst bath when all the other impurities are completely
frozen out. It thus su�ces to understand the modifica-
tions of the boundary spectral function due to the pres-
ence of additional weak links in the bulk of the bath.
The corresponding spectral functions for the boundary
spin S1

x are shown in Fig. 6 for two di�erent arrange-
ments of weak links corresponding to k = {6, 12} and
k = {4, 8, 12} in Eq. (17). The top panel shows the re-
sults for the e�ective model of size L = 10 with one
weak link in the middle and L = 15 with two weak links.
Di�erent colors correspond to di�erent impurity poten-
tials ranging from 1/2 to 20, specifically V = 40k/6/2,
k = 0, 1, . . . 6, and hence di�erent strengths of weak links
Je� = 1/(2V ). Like in Fig. 4 the spectral functions for
di�erent system sizes look identical up to the cuto� scale
which increases with the many-body bandwidth. Com-
pared to the case with no impurities, which also corre-
sponds to the top blue line corresponding to V = 1/2,
we see two jumps developing in the spectral function at
Ê ¥ 3.5 and Ê ¥ 7. These jumps can be easily explained
using the same heuristic argument as before: In order to
dump a large amount of energy Ê one has to excite ·Ê/2
strong links (see discussion after Eq. (14)). However, af-
ter each ¸ = 5 strong links in our setup there is a weak
link, which almost does not contribute to the energy if
Je� π 1 but leads to an additional 1/(2V ) suppression
to the matrix element and correspondingly 1/(2V )2 sup-
pression to the spectral function and the FGR rate. This
simple argument is confirmed numerically in the inset of
the top panel Fig. 6 where the two lines show dependence
of the drop in the spectral function on V at two values
of Ê indicated by the arrows in the main plot. The ex-
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FIG. 6. Boundary spectrum II: The high frequency part
of the spectral function of the Sx operator on the boundary
of a chain with a weak link Je� = J2/(2V ) after every fifth
site (panel A) and every third site (panel B); color goes from
blue to red with increasing V . The black dashed lines in panel
A are for a system of L = 10, indicating that the intermedi-
ate frequency part remains unchanged with increasing system
size. The insets show the scaling of the jumps in the spectral
function at the frequencies indicated by the corresponding
arrows in the main figure.

tracted jumps are well described by power laws consistent
with the expected 1/(2V )2 (after one jump) and 1/(2V )4

(after two jumps) scalings. In the bottom panel of Fig. 6
we show similar results for weak links located after every
third site as shown in the inset. Now the jumps appear
more frequently but the magnitude of each jump is again
consistent with V ≠2 scaling per block. We thus see that
the spectral function of the e�ective model is described
by

Ae�
x (Ê) & A0

x(Ê) exp(≠·Ê/¸ log(2V )), (18)

This spectral function gives a lower bound on the spectral
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tracted jumps are well described by power laws consistent
with the expected 1/(2V )2 (after one jump) and 1/(2V )4

(after two jumps) scalings. In the bottom panel of Fig. 6
we show similar results for weak links located after every
third site as shown in the inset. Now the jumps appear
more frequently but the magnitude of each jump is again
consistent with V ≠2 scaling per block. We thus see that
the spectral function of the e�ective model is described
by

Ae�
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How do extra impurity affect the spectral function?
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Part 3: Avalanches with infinity bath
Anderson Insulator
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Conclusion

• Enhanced susceptibility when system breaks ergodicity  

• Contraints transition scenarios 

• Impurity model elucidates difference between ergodicity 
breaking and freezing of the impurity  

• Any finite density is ergodic in thermodynamic limit 

• Previous deep MBL regime still has avalanches for disorder 
O(20) in small systems  

• We see indication for absence of l-bits


