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2"* Lecluie.
Iwisl aulomorphismits dimer expansion

I lotation:for:I let \(: -)wo - &
and CS,be the permutation (iD (:(-02

definition:the generalized cross product...

of
& a as a CDis the vector in I satisfying

* as in QEr, ...), an

for all mc D where,m is the standard inner product

definition:the twist M nr, ..., WW, of a 7

matricM...., is the matric where

nw. ⑨ DiD 2(i)
A &

DiD

and where :()(: if:if i



Examples. letM...., be a a matric

M 7) ...) 7
for 2

I M 37 C 2) ... 2 7
for 3

observations:

MC ar, 4whenever MC an K

2aM aeM for any(()

3 the twist M M induces both a birational

Cmap. ⑳*as well as a regular

Cmap.

definition:the twist of a function

is the composition "DP)

remark:the map
~

is an algebra homorphism

& &C



Example. for 3,26 calculate 246
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fact. the twist of any cluster variable (Ican

be expressed as a product -I where IX
is a cluster variable and is a monomial consisting

of frozen plucker coordinates for :3



Problem:calculate the unique Laurent polynomial
-

expansion of each twisted plucker coordinate

with respect to the cluster *p associated to any

Sh postnibor diagram D

The Biparlile Qual Graph
ofa PosInikov Diagram.

definition:the bipartite graph dual to a c postnikov

diagram & is the bipartite graph o whose

vertices correspond to the oriented regions of D

vertices counter clockwise regions

&vertices clockwise regions

Ian edge is drawn when two

oriented regions are incident ·
at an intersection of paths
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definition:the :*boundary vertex of is the

· verter which corresponds to the clockwise boundary

region ofa touching the it source and sink,:2

definition:let &denote the set of boundary

vertices in

observations:

& vertices vertices

I & 7

remark:the faces of
a correspond to the alter.

regions of D

definition:label a face of a by if the

corresponding alter. region in D is labeled by
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two bipartite graphs considered equivalent when related

by isotopy and verter blow ups and blow downs

= -X
dual version of local

creation annihilation

of oriented lenses



observation:let & and & be , postnibor diagrams

related by a quad more then the bipartite dual

graphs &
and
I are

related by a spider move

up to equivalence up to equivalence

-~
-

"O &i- ~↳ x
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-
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D D

up to equivalence up to equivalence



spider move

·.~·

. W

↑I 11,
- ·⑲

D D

definition:the face induced edge

weight of an edge IC is
⑳

w(ED

S

2

S
where -
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Dikesus:

definition: will denote the induced subgraph of

&
obtained by removing the boundary vertices in

&labeled by the subset = 4...., 8

remark: vertices vertices in D

definition:a dimer configuration f is a subset

of edges in a such that each verter C is

incident to exactly one edgef

definition:the dimer partition function of is

-

W
28with wo w(ED

D

dimerson
o

&(f
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remark:
'

is independent of blow ups downs, i.e.
e

W whenever and
~

are two bipartite graphs

related by blow ups downs and both equipped with

common face induced edge weights

Theorem. let & be any, a postnibor diagram and

let be its bipartite dual graph then

-

W

&
e for any subset

interior faces
~

in D
2 S

r

denoteby

Comments on Proof.

prove for a specifics, adiagram &

involves condensation identities

Iprove that it is valid for some, adiagram

& then is valid for any diagram obtained

from A using a quad more spider move



Poin).

·Construct, adiagram & such that

there is a subset for each x*0

such that ur where it is some

monomial of frozen plucker coordinates

subset labels of
2*D E alter, regions of D ↓ is

the cluster of another s diagram D

·has exactly one dimer configuration and

formula is valid for each #, i.C.
-

W

D D

·S. subsets 1/ satisfy the plucker relations

·(I. subsets 1/ satisfy the plucker relations

·each It is a homogeneous, degree one Laurent
-

polynomial in for x*0



Poin(1.

·must show' D

W

D D
whenever D

and & are related by a quad more, i.e.

W W

Sir D : D

where and so (*p are exchanged

by the quad more with:sivdisjoint from

ir ⑬ ⑳ :·
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- ~&
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·seven cases to consider. condition by how vertices

in,,m, match with the two interior vertices

ich ich
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conditioned partition functions equal


