Dimers and Grassmannians CUNY ITS, august 2023

Jeanne Scott
n $^{\text {nd }}$ Lecture:
Twist automorphism its dimer expansion
Notation: for $1 \leqslant i \leqslant n$ let $i=\{(i-r) \bmod n \mid 0 \leqslant r \leqslant k-1\}$ and $\sigma \in S_{n}$ be the permutation $\sigma(i)=(i-1) \bmod n$
definition: the generalized cross-product $v_{1} \times \cdots \times v_{k-1}$ of $v_{1}, \ldots, v_{k-1} \in \mathbb{C}^{k}$ is the vector in \mathbb{C}^{k} satisfying

$$
\left\langle v_{1} \times \cdots \times v_{k-1}, w\right\rangle=\operatorname{det}\left(v_{1}, \ldots, v_{k-1}, w\right)
$$

for all $w \in \mathbb{C}^{k}$ where $\langle v, w\rangle$ is the standard inner product
definition: the twist $\bar{\eta}=\left(w_{1}, \ldots, w_{n}\right)$ of a $k \times n$ matrix $\eta=\left(v_{1}, \ldots, v_{n}\right)$ is the $k \times n$ matrix where

$$
\begin{aligned}
& W_{i}=\varepsilon_{i} V_{\sigma^{k-1}(i)} \times V_{\sigma^{k-2}(i)} \times \cdots \times V_{\sigma(i)} \\
& \text { and where } \varepsilon_{i}= \begin{cases}(-1)^{i(k-i)} & \text { if } i \leqslant k-1 \\
1 & \text { if } i \geqslant k\end{cases}
\end{aligned}
$$

Examples: let $\eta=\left(v_{1}, \ldots, v_{n}\right)$ be a $k \times n$ matrix
(1) $\overleftarrow{\check{m}}=\left(-v_{n}, v_{1}, \ldots, v_{n-1}\right)$ for $k=2$
(2) $\check{\mathscr{\eta}}=\left(v_{n-1} \times v_{n}, v_{n} \times v_{1}, v_{1} \times v_{2}, \ldots, v_{n-2} \times v_{n-1}\right)$ for $k=3$
observations:
(1) $\check{m} \in \operatorname{Mat}_{k, n}^{*}(\mathbb{C})$ whenever $\eta \in \operatorname{Mat}_{k, n}^{*}(\mathbb{C})$
(2) $\overleftarrow{g 7 \eta}=\operatorname{det}(g) g^{-T} \overleftarrow{\eta}$ for any $g \in G L_{k}(\mathbb{C})$
(3) the twist $\bar{\eta} \longmapsto \overleftarrow{\eta}$ induces both a birational map $\varphi: G r_{k}^{n} \longrightarrow G r_{k}^{n}$ as well as a regular $\operatorname{map} \hat{\varphi}: \widehat{G}_{r_{k}}^{n} \longrightarrow \widehat{G}_{r_{k}}^{n}$
definition: the twist \overleftarrow{f} of a function $f \in \mathbb{C}\left[\widehat{G}_{r}^{n}\right]$ is the composition $\overleftarrow{f}=f(\widehat{\varphi})$
remark: the map $f \longmapsto \overleftarrow{f}$ is an algebra homorphism

$$
\mathbb{C}\left[\widehat{G}_{r}^{n}{ }_{k}^{n}\right] \longrightarrow \mathbb{C}\left[\widehat{G}_{r}^{n}\right]
$$

Example: for $k=3, n=6$ calculate [246]

$$
\begin{aligned}
& \eta=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right) \in \operatorname{Mat}_{3,6}^{*}(\mathbb{C}) \\
& \overleftarrow{\grave{\eta}}=\left(v_{5} \times v_{6}, v_{6} \times v_{1}, v_{1} \times v_{2}, v_{2} \times v_{3}, v_{3} \times v_{4}, v_{4} \times v_{5}\right) \\
& \text { [246] }=\operatorname{det}\left(v_{6} \times v_{1} \quad v_{2} \times v_{3} \quad v_{4} \times v_{5}\right) \\
& =\left\langle v_{6} \times v_{1},\left(v_{2} \times v_{3}\right) \times\left(v_{4} \times v_{5}\right)\right\rangle \\
& =\operatorname{det}\left(\begin{array}{cc}
\left\langle v_{6}, v_{2} \times v_{3}\right\rangle & \left\langle v_{6}, v_{4} \times v_{5}\right\rangle \\
\left\langle v_{1}, v_{2} \times v_{3}\right\rangle & \left\langle v_{1}, v_{4} \times v_{5}\right\rangle
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
{[236]} & {[456]} \\
{[123]} & {[145]}
\end{array}\right) \\
& =[236][145]-[123][456] \text { cluster variable! }
\end{aligned}
$$

fact: the twist \bar{x} of any cluster variable $x \in \mathcal{X}$ can be expressed as a product $\bar{x}=m y$ where $y \in \mathcal{X}$ is a cluster variable and m is a monomial consisting of frozen plucker coordinates [i] for $1 \leqslant i \leqslant n$

Problem: calculate the unique Laurent polynomial expansion of each twisted plucker coordinate with respect to the cluster $X_{\mathscr{D}}$ associated to any $\pi_{k, n}$-postnikov diagram \mathscr{D}

The Bipartite Dual Graph of a Postnikov Diagram:
definition: the bipartite graph dual to a π-postnikov diagram \mathscr{D} is the bipartite graph Γ_{D} whose
(1) vertices correspond to the oriented regions of D-vertices \Longleftrightarrow counter-clockwise regions-vertices \Longleftrightarrow clockwise regions
(2) an edge is drawn when two oriented regions are incident at an intersection of paths

definition: the $i^{\text {th }}$ boundary vertex of $\Gamma_{\mathscr{D}}$ is the - vertex which corresponds to the clockwise boundary region of \mathscr{D} touching the $i^{\text {th }}$ source and sink, $1 \leqslant i \leqslant n$
definition: let $\partial \Gamma_{D}$ denote the set of boundary vertices in Γ_{D}
observations:
(1) $\#$ - -vertices $=\# O$-vertices $+k$
(2) $\# \partial \Gamma_{\mathscr{D}}=n$
remark: the faces of Γ_{D} correspond to the alter. regions of D
definition: label a face of $\Gamma_{\mathscr{D}}$ by [I] if the corresponding alter. region in \mathscr{D} is labeled by I

two bipartite graphs considered equivalent when related by isotopy and O-vertex blow-ups and blow-downs

dual version of local creation/annhilation
 of oriented lenses
observation: let \mathscr{D} and \mathscr{D}^{\prime} be π-postnikov diagrams related by a quad-move then the bipartite dual graphs Γ_{D} and $\Gamma_{D^{\prime}}$ are related by a spider-move
 up to equivalence

up to equivalence

up to equivalence
spider-move

definition: the face-induced edge weight of an edge $e \in \Gamma_{\mathscr{D}}$ is

$$
\omega(\mathrm{e})=\prod_{s=1}^{t}\left[I_{s}\right] \text { where }
$$

Example:

$$
\begin{aligned}
& \omega(\mathrm{e})=[145][146] \\
& \omega(\mathrm{e})=[134]
\end{aligned}
$$

Dimers:
definition: Γ_{D}^{I} will denote the induced subgraph of Γ_{D} obtained by removing the boundary vertices in $\partial \Gamma_{\mathscr{D}}$ labeled by the k-subset $I \subset\{1, \ldots, n\}$ remark: $\#$-vertices $=\# O$-vertices in Γ_{D}^{I}
definition: a dimer configuration δ is a subset of edges in Γ_{D}^{I} such that each vertex $v \in \Gamma_{D}^{I}$ is incident to exactly one edge $e \in \delta$
definition: the dimer partition function of Γ_{D}^{I} is

$$
\Delta_{\mathscr{D}}^{\mathrm{I}}=\sum_{\text {dimers } \delta \text { on } \Gamma_{D}^{\mathrm{I}}} \omega(\delta) \text { with } \omega(\delta)=\prod_{\mathrm{e} \in \delta} \omega(\mathrm{e})
$$

Γ_{D}^{I} where $I=\{2,4,6\}$

$[145][146][136] \cdot[136][234][145]$
$[145][146][136] \cdot[123][345][146]$

$$
\begin{aligned}
\Delta_{D}^{246}=[145][146][136] \cdot & (\underbrace{[136][234][145]+[123][345][146]}) \\
& =[134][134]^{\prime} \text { exchange relation } \\
& =[134] \stackrel{[246]}{ } \text { twist }
\end{aligned}
$$

remark: Δ^{I} is independent of blow-ups/downs, i.e. $\Delta^{I}=\tilde{\Delta}^{I}$ whenever Γ and $\tilde{\Gamma}$ are two bipartite graphs related by blow-ups/downs and both equipped with common face-induced edge-weights

Theorem: let \mathscr{D} be any $\pi_{k, n}$-postnikov diagram and let Γ_{D} be its bipartite dual graph then
(*) $\overleftarrow{[I]}=\Delta_{\mathscr{D}}^{I} \cdot \prod_{\text {interior faces }}\left[I_{f}\right]^{-1}$ for any k-subset I
\qquad f in Γ_{D}
denote by $\Pi_{\mathscr{D}}$
Comments on Proof:
(1) prove (*) for a specific $\pi_{k, n}$-diagram (involves condensation identities)
(2) prove that if $(*)$ is valid for some $\pi_{k, n}$-diagram D then (*) is valid for any diagram obtained from \mathbb{D} using a quad-move (spider-move)

Point 1:

- Construct $\pi_{k, n}$-diagram \mathscr{D} such that (1) there is a k-subset $\breve{\mathrm{I}}$ for each $[I] \in X_{\mathscr{D}}$ such that $\overleftarrow{[I]}=m_{I}[\check{I}]$ where m_{I} is some monomial of frozen plucker coordinates
(2) $X_{\mathscr{D}}=\left\{[\breve{I}] \begin{array}{l}\begin{array}{l}k \text {-subset labels I of } \\ \text { alter. regions of } \mathscr{D}\end{array}\end{array}\right\}$ is the cluster of another $\pi_{k, n}$-diagram
- $\Gamma_{\mathscr{D}}^{I}$ has exactly one dimer configuration and formula (*) is valid for each $[I] \in X_{D}$, i.e.

$$
\overleftarrow{[I]}=\Delta_{\check{D}}^{I} \Pi_{\breve{\mathscr{D}}}
$$

- $\left\{\Delta_{\check{D}}^{J}: k\right.$-subsets $\left.J\right\}$ satisfy the plucker relations
- $\{[\bar{J}]: k$-subsets $J\}$ satisfy the plucker relations
- each $[\overline{\mathrm{J}}]$ is a homogeneous, degree one Laurent polynomial in $\overleftarrow{[I]}$ for $[I] \in X_{\mathscr{D}}$

Point 2:

- must show $\Delta_{\mathscr{D}}^{\mathrm{I}} \Pi_{\mathscr{D}}=\Delta_{\mathscr{D}^{\prime}}^{\mathrm{I}} \Pi_{D^{\prime}}$ whenever \mathscr{D} and D^{\prime} are related by a quad-move, ie.

$$
[L s t] \Delta_{\mathscr{D}}^{I}=\left[L_{i j}\right] \Delta_{D^{\prime}}^{I}
$$

where $\left[L_{i j}\right] \in X_{\mathscr{D}}$ and $[L s t] \in X_{D^{\prime}}$ are exchanged by the quad-move with $i<s<j<t$ disjoint from L

- seven cases to consider: condition by how vertices u, v, w, z match with the two interior O-vertices

conditioned partition functions equal

