Dimers and Grassmannians CUNY ITS, august 2023

Jeanne Scott
$3^{\text {rd }}$ Lecture:
Dimers, surfaces, and spin-structures
definition: a bipartite map (Γ, Σ) is a pair where

- Γ is a bipartite graph, $\#$-vertices $=\# O$-vertices
$-\sum$ is a closed, oriented surface, genus $=g$
- embedding $\Gamma \longleftrightarrow \sum, \forall f$ face, closure $\bar{f} \simeq$ disk
- there exists abstract weight $\omega(\mathrm{e}), \forall \mathrm{e}$ edge

Example: bipartite map (Γ, Σ) on $\Sigma=$ torus

definition: as before, the weight of a dimer configuration δ of Γ is $\omega(\delta)=\prod_{e \in \delta} \omega(e)$
observation: the symmetric difference $\delta \Delta \delta^{\prime}$ of two dimers δ and δ^{\prime} is disjoint union of simple cycles in Σ, and determines homology class

$$
\left[\delta \Delta \delta^{\prime}\right] \in H_{1}\left(\sum ; F_{2}\right)
$$

definition: for $\gamma \in H_{1}\left(\sum ; F_{2}\right)$ the γ-dimer partition function is

$$
\Delta_{\Gamma}^{\gamma}=\sum_{\substack{\text { dimers } \delta \text { on } \Gamma \\ \\ \\\left[\delta \Delta \delta_{0}\right]=\gamma}} \omega(\delta)
$$

where δ_{0} is a fixed reference dimer
definition: a kasteleyn orientation α of (Γ, Σ) is an edge-orientation $\mathcal{Z}(e) \in\{ \pm 1\} \forall$ edges such that

$$
\prod_{e \in \partial f} \mathcal{Z}(e)=(-1)^{1+\frac{|\partial f|}{2}} \quad \forall f \text { faces }
$$

where $\mathcal{K}(e)=\left\{\begin{aligned} 1 & \bullet \\ -1 & \multimap 0\end{aligned}\right.$
remark: if \mathcal{Z} is kasteleyn and $v \in \Gamma$ is a vertex then

$$
\widetilde{\mathcal{K}}(e)= \begin{cases}-\mathcal{\chi}(e) & \text { if } v \in \partial e \\ \mathcal{\chi}(e) & \text { if } v \notin \partial e\end{cases}
$$

defines a kasteleyn orientation; \mathcal{K} and $\widetilde{\mathcal{K}}$ are said to be gauge-equivalent
remark: label edges $e \in \delta_{0}$ by $\{1, \ldots, n\}$ and label a vertex $v \in \Gamma$ by $i \in\{1, \ldots, n\}$ if $v \in \partial e$ and e is labeled by i where $\# \Gamma=2 n$
definition: the kasteleyn matrix A_{Γ}^{α} is the $n \times n$ matrix whose $i \times j$ entry is

$$
\alpha\left(\begin{array}{ll}
O & j \\
i & j
\end{array}\right) \cdot \omega\left(\begin{array}{ll}
O & j \\
i & j
\end{array}\right)
$$

Theorem: (Cimasoni-Reshetikhin)

$$
\operatorname{det} A_{\Gamma}^{\alpha}=\alpha\left(\delta_{0}\right) \cdot \sum_{\gamma \in H_{1}\left(\sum ; F_{2}\right)}(-1)^{q^{\alpha}(\gamma)} \Delta_{\Gamma}^{\gamma}
$$

where $\mathcal{K}\left(\delta_{0}\right)=\prod_{e \in \delta_{0}} \mathcal{Z}(e)$ and $q^{\alpha}: H_{1}\left(\sum ; F_{2}\right) \rightarrow \mathbb{F}_{2}$ is an F_{2}-valued quadratic form depending on both the reference dimer δ_{0} and kasteleyn orient. \mathcal{K}
remark: Kuperberg has a construction, using δ_{0} and \mathcal{Z}, which creates a vector field η on \sum with even-index singularities. From η a cohomology class $\xi \in H^{1}\left(P_{S O(2)} ; F_{2}\right)$ where $P_{S O(2)} \rightarrow \sum$ is a principal sO(2)-bundle, i.e. a spin-structure
mutation
definition: let $X_{\Gamma}=\left\{X_{f}\right.$: faces of $\left.(\Gamma, \Sigma)\right\}$ be a set of independent variables. Let $\omega(e)$ be the associated face-induced edge-weight for an edge e of (Γ, Σ)

$$
\omega(e)=\prod_{s=1}^{t} x_{s} \quad \text { where }
$$

remark: we work up to isotopy and O-vertex
blow-ups and blow-downs

definition: let (Γ, Σ) be a bipartite map with faceinduced edge-weights. the spider-move associated to a quadrilateral face is local transformation

$$
(\Gamma, \Sigma)
$$

$$
x_{5} \bar{x}_{5}=x_{1} x_{3}+x_{2} x_{4}
$$

exchange relation
definition: using the spider-move we can transport a dimer δ on (Γ, Σ) to a dimer δ^{\prime} on (Γ, Σ)
seven cases:

observation: let δ_{0} be a reference dimer for (Γ, Σ) and let δ_{0}^{\prime} be a dimer for (Γ, Σ) obtained by transporting δ_{0} using the spider-move then
$\Pi_{\Gamma} \Delta_{\Gamma}^{\gamma}=\Pi_{\Gamma} \Delta_{\Gamma}^{\gamma}$ for any $\gamma \in H_{1}\left(\sum ; \mathbb{F}_{2}\right)$ where $\prod_{\Gamma}=\prod_{\text {faces } f} X_{f}^{-1}$
definition: we can also transport a kasteleyn orient. α on (Γ, Σ) to a kasteleyn orient. $\bar{\alpha}$ on $(\bar{\Gamma}, \Sigma)$

(Γ, Σ) with d

(Γ, Σ) with $\bar{\alpha}$
observation: the spider-move on kasteleyn orients. is well-defined and is an involution

Conjecture: let δ_{0} and \mathcal{Z} be a reference dimer and kasteleyn orient. on (Γ, Σ); let δ_{0}^{\prime} and $\dot{\mathcal{K}}$ be their counterparts on (Γ, Σ) then the quadratic forms q^{α} and $q^{\bar{\alpha}}$ are equal

