

CUNY ITS, august 2023

Jeanne Scott

3rd Zecture

<u>3rd *Lecture*:</u>

Dimers, surfaces, and spin-structures

<u>definition</u>: a <u>bipartite</u> map (Γ, Σ) is a pair where

- Γ is a bipartite graph, $\# \circ$ -vertices = $\# \circ$ -vertices
- Σ is a closed, oriented surface, genus = g
- embedding $\Gamma \hookrightarrow \Sigma$, $\forall f$ face, closure $\overline{f} \simeq disk$
- there exists abstract weight $\omega(e)$, $\forall e$ edge

<u>Example</u>: bipartite map (Γ, Σ) on Σ = torus

<u>definition</u>: as before, the <u>weight</u> of a dimer configuration δ of Γ is $\omega(\delta) = \prod_{e \in \delta} \omega(e)$

<u>observation</u>: the symmetric difference $\delta \bigtriangleup \delta'$ of two dimers δ and δ' is disjoint <u>union</u> of <u>simple</u> <u>cycles</u> in Σ , and determines homology class $[\delta \bigtriangleup \delta'] \in H_1(\Sigma; \mathbb{F}_2)$

 $\frac{\text{definition:}}{\text{for } \mathbf{v} \in H_1(\Sigma; \mathbb{F}_2) \text{ the } \mathbf{v} \text{-dimer partition}}$ function is $\Delta_{\Gamma}^{\mathbf{v}} = \sum_{i} \omega(\delta)$

dimers δ on Γ $\left[\delta \bigtriangleup \delta_0\right] = \mathbf{v}$

where δ_0 is a fixed <u>reference</u> <u>dimer</u>

 $\frac{\text{definition:}}{\text{a kasteleyn orientation } \mathcal{K} \text{ of } (\Gamma, \Sigma) \text{ is}}$ $\text{an edge-orientation } \mathcal{K}(e) \in \{\pm 1\} \forall e \text{ edges such that}$ $\prod_{e \in \partial f} \mathcal{K}(e) = \begin{pmatrix} -1 \end{pmatrix}^{1 + \frac{|\partial f|}{2}} \quad \forall f \text{ faces}$ $\text{where } \mathcal{K}(e) = \begin{cases} 1 & \bullet & \bullet \\ -1 & \bullet & \bullet \\ -1 & \bullet & \bullet \\ \end{pmatrix}$

 $\frac{remark}{\mathcal{X}}: \text{ if } \mathcal{X} \text{ is kasteleyn and } v \in \Gamma \text{ is a vertex then}$ $\widetilde{\mathcal{X}}(e) = \begin{cases} -\mathcal{X}(e) & \text{if } v \in \partial e \\ \mathcal{X}(e) & \text{if } v \notin \partial e \end{cases}$

defines a kasteleyn orientation; $\mathcal X$ and $\widetilde \mathcal X$ are said to be <u>gauge-equivalent</u>

<u>remark</u>: label edges $e \in \delta_0$ by $\{1, ..., n\}$ and label a vertex $v \in \Gamma$ by $i \in \{1, ..., n\}$ if $v \in \partial e$ and e is labeled by i where $\# \Gamma = 2n$ <u>definition</u>: the <u>kasteleyn</u> <u>matrix</u> A^{lpha}_{Γ} is the n×n matrix whose i×j entry is

$$\mathcal{K}\begin{pmatrix} \circ & \bullet \\ i & j \end{pmatrix} \cdot \omega\begin{pmatrix} \circ & \bullet \\ i & j \end{pmatrix}$$

Theorem: (Cimasoni-Reshetikhin)

$$\det \mathsf{A}_{\Gamma}^{\mathscr{X}} = \mathscr{K}(\mathsf{S}_{\mathsf{O}}) \cdot \sum_{\mathfrak{F}_{\mathsf{O}}} (-1)^{\mathsf{Q}^{\mathscr{K}(\mathfrak{F})}} \Delta_{\Gamma}^{\mathfrak{F}}$$

where $\mathscr{K}(\mathcal{S}_{O}) = \prod_{e \in \mathcal{S}_{O}} \mathscr{K}(e)$ and $q^{\mathscr{K}} \colon H_{1}(\Sigma; \mathbb{F}_{2}) \to \mathbb{F}_{2}$

is an \mathbb{F}_2 -valued <u>quadratic</u> form depending on both the reference dimer S_0 and kasteleyn orient. \mathcal{X}

<u>remark</u>: Kuperberg has a construction, using δ_0 and \mathcal{K} , which creates a vector field γ on Σ with even-index singularities. From γ a cohomology class $\mathcal{E} \in H^1(P_{SO(2)}; \mathbb{F}_2)$ where $P_{SO(2)} \rightarrow \Sigma$ is a principal SO(2)-bundle, i.e. a <u>spin-structure</u>

<u>Mutation</u>

<u>definition</u>: let $X_{\Gamma} = \{X_{f} : \text{faces of } (\Gamma, \Sigma)\}$ be a set of independent variables. Let $\omega(e)$ be the associated face-induced edge-weight for an edge e of (Γ, Σ)

<u>remark</u>: we work up to <u>isotopy</u> and \bigcirc -vertex <u>blow-ups</u> and <u>blow-downs</u>

exchange relation

 $\mathbf{X}_5 \mathbf{\tilde{X}}_5 = \mathbf{X}_1 \mathbf{X}_3 + \mathbf{X}_2 \mathbf{X}_4$

 X_3

 (Γ, Σ)

 X_3

 (Γ, Σ)

<u>definition</u>: using the spider-move we can transport a dimer δ on (Γ, Σ) to a dimer δ on (Γ, Σ)

<u>observation</u>: let δ_0 be a reference dimer for (Γ, Σ) and let δ'_0 be a dimer for $(\tilde{\Gamma}, \Sigma)$ obtained by transporting δ_0 using the spider-move then $\prod_{\Gamma} \Delta^{\mathfrak{F}}_{\Gamma} = \prod_{\tilde{\Gamma}} \Delta^{\mathfrak{F}}_{\tilde{\Gamma}} \text{ for any } \mathfrak{F} \in H_1(\Sigma; \mathbb{F}_2)$ where $\prod_{\Gamma} = \prod_{\text{faces } f} \times_{f}^{-1}$

<u>definition</u>: we can also transport a kasteleyn orient. \mathcal{K} on (Γ, Σ) to a kasteleyn orient. $\tilde{\mathcal{K}}$ on $(\tilde{\Gamma}, \Sigma)$

<u>observation</u>: the spider-move on kasteleyn orients. is well-defined and is an <u>involution</u> <u>Conjecture</u>: let δ_0 and \mathscr{K} be a reference dimer and kasteleyn orient. on (Γ, Σ) ; let δ'_0 and \mathscr{K} be their counterparts on $(\widetilde{\Gamma}, \Sigma)$ then the quadratic forms $Q^{\mathscr{K}}$ and $Q^{\mathscr{K}}$ are equal