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It doesn't matter how beautiful your theory iL‘
doesn't matter how smart you are. If it doesn't
agree with experiment, it's wrong.”

— Richard P. Feynma
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A remarkable example: 2d Ising model
in a magnetic field at T=T, ...
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INTEGRALS OF MOTION AND S-MATRIX OF THE (SCALED) T = T,
ISING MODEL WITH MAGNETIC FIELD

A. B.ZAMOLODCHIKOV*
Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, 0X11 0QX, England.

Received 24 January 1989

It is shown that the field theory describing the scaling limitof T = T, Ising model with nonzero
magnetic ficld possesses a number of nontrivial local integrals of motion. The exact mass spectrum
and S-matrix of this field theory is conjectured.

1. Introduction

Conformal field theory (CFT) and Integrable field theory (IFT) in two dimensions
are two subjects which attracted much attention in the last years. The subjects seem
to be deeply related. Very close mathematics is involved in treatment of both theories
{see Ref. 1 and references therein). Also, the ultraviolet limit (and sometimes also the
infrared limit>3) of IFT is described by CFT and so the general IFT can be considered
as the CFT perturbed by particular “integrable” relevant operator.* S The most simple
example is the scaling limit T~ T of the Ising model (with zero magnetic field), which
is well known to be the (certainly integrable) field theory of free massive Majorana
fermions; it can be considered as ¢ = 1/2CFT perturbed by the spinless primary field
¢ = @, 3 (‘energy density”) having the conformal dimensions (1 /2,1/2).

In this paper we consider the same ¢ = 1/2 CFT but now perturbed by the Z, odd
primary operator ¢ = D2

HL?=Hpp + h j.a(x)dzx (1.1

where Hyp, is the Action (or Hamiltonian in statistical physics) ofthec = 1/2CFT and
h is the (dimensional) constant. The field o(x) (which have the dimensions (1/16,1 /16))
is interpreted as the spin density in the critical T = T; Ising model and so the
Hamiltonian (1.1) describes the scaling limit of T = T, Ising model with nonzero
magnetic field h. 1t will be shown that the field theory (1.1) possesses several nontrivial
local integrals of motion (IM) of the form

+ Permanent address: L.D. Landau Institute for Theor. Physics, Kosygina-2, 117334, Moscow.
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in an Ising Chain:

Experimental Evidence for
Emergent Eg Symmetry

R. Coldea,™* D. A. Tennant,? E. M. Wheeler,*t E. Wawrzynska,® D. Prabhakaran,*
M. Telling,* K. Habicht,? P. Smeibidl,? K. Kiefer®

Quantum phase transitions take place between distinct phases of matter at zero temperature. Near
the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of
the system. A symmetry described by the Eg Lie group with a spectrum of eight particles was long
predicted to appear near the critical point of an Ising chain. We realize this system experimentally by
using strong transverse magnetic fields to tune the quasi—one-dimensional Ising ferromagnet
CoNb,0, (cobalt niobate) through its critical point. Spin excitations are observed to change character
from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the
critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a
ratio that approaches the golden mean predicted for the first two meson particles of the Eg spectrum.
Our results demonstrate the power of symmetry to describe complex quantum behaviors.

ymmetry is present in many physical sys-

tems and helps uncover some of their funda-

mental properties. Continuous symmetries
lead to conservation laws; for example, the in-
variance of physical laws under spatial rotation
ensures the conservation of angular momentum.
More exotic continuous symmetries have been
predicted to emerge in the proximity of certain
quantum phase transitions (QPTs) (/, 2). Recent
experiments on quantum magnets (3—5) suggest
that quantum critical resonances may expose the
underlying symmetries most clearly. Remarkably,
the simplest of systems, the Ising chain, prom-
ises a very complex symmetry, described math-
ematically by the Eg Lie group (2, 6-9). Lie
groups describe continuous symmetries and are

important in many areas of physics. They range
in complexity from the U(1) group, which ap-
pears in the low-energy description of super-
fluidity, superconductivity, and Bose-Einstein
condensation (10, 11), to Eg, the highest-order
symmetry group discovered in mathematics (/2),
which has not yet been experimentally realized
in physics.

The one-dimensional (1D) Ising chain in trans-
verse field (10, 11, 13) is perhaps the most-studied
theoretical paradigm for a quantum phase transi-
tion. It is described by the Hamiltonian

H =3, - JSS;,, = hS} (1)

where a ferromagnetic exchange J > 0 between
nearest-neighbor spin-% magnetic moments S; ar-
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A

ranged on a 1D chain competes with an applied
external transverse magnetic field 4. The Ising ex-
change J favors spontaneous magnetic order along
the z axis (|111 ==- 1) or ||| -** |)), whereas
the transverse field / forces the spins to point along
the perpendicular +x direction (| >—— -+ —)).
This competition leads to two distinct phases, mag-
netically ordered and quantum paramagnetic, sepa-
rated by a continuous transition at the critical field
hc=J/2 (Fig. 1A). Qualitatively, the magnetic field
stimulates quantum tunneling processes between
1 and | spin states and these zero-point quantum
fluctuations “melt” the magnetic order at 4 (10).

To explore the physics of Ising quantum crit-
icality in real materials, several key ingredients
are required: very good one-dimensionality of the
magnetism to avoid mean-field effects of higher
dimensions, a strong easy-axis (Ising) character,
and a sufficiently low exchange energy J of a few
meV that can be matched by experimentally at-
tainable magnetic fields (10 T ~ 1 meV) to access
the quantum critical point. An excellent model
system to test this physics is the insulating quasi-
1D Ising ferromagnet CoNb,Og (/4-16), where
magnetic Co>" ions are arranged into near-isolated
zigzag chains along the ¢ axis with strong easy-
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If possible, there is a class of universality even
richer and more infriguing

It is the one of the Tricrifical Ising Model

Beautiful symmetries: E; SUSY, duality, parity, etc.

It poses an interesting and engaging challenge
from the experimental point of view



Topics of the seminar

* The class of universality of the Tricritical Ising Model
(i) Spin 1 and Blume-Capel model

(i) Conformal Field Theory and its deformations
(iii) SUSY and E; symmetry

e Thermal deformation

(i) low-high temperature duality

(ii) E; particles, kinks and their elastic S-matrix

* Exact Form Factors and Dynamical Structure Factors

(i) Bootstrap equations

(ii)  Exact solutions and operator content



The Physics of Spin 1
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Phase diagram of TIM

1 order
\TIM

@ He
Low Temperature

Temperature

Ising Model




By varying the chemical potential of the vacancies
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Stress-energy tensor and Virasoro algebra

C _ | ZT(ZQ) 1
1z W = | | 0T’
(21)T'(22) e s Ll e (O S (22)
Mode expansion T’ — - L



Stress-energy tensor and Virasoro algebra

C
L, Ll =2 (n=mM, 1. 12n(n2 . |

* ¢ identifies the classes of universality

* IR and primary operators

Lopa(z) = Aoa(z)
Ln¢A(Z) =0,n>0




TIM: Operator Content from Conformal Field Theory

Second unitary minimal model. The anomalous dimensions A
are gi\/en ﬁy the Kac table

______________________________________




Fusion Rules and Structure constants of TIM

EVEN * EVeEN

exe=[1] Heci |t

tt=[1] +ea ft]

4\r3(2
ext=ci € + cs[e”] Gy = g\l igg;gg
c2=c1
even * odd cg = 2
ex o = cao] cs =1
exo =cq0']+ cs5[0] cs = 2a
tx o’ = cg o] ce = 3
txo=cglo'] + cr o] cr = 1c
cs = %
odd x odd @z%

o' o' =[1] + cs [€"]
o' *x o = ca €] + cs [t]

oxo=[1]+ cs €] + c7 [t] + co [€”]




Duality: order and disorder operators

 In the TIM, each order operator ¢ is accompanied by its dual disorder operator T,
of equal conformal dimension

* As in the Ising Model, this is a consequence of the presence of fermionic fields!



Fermionic fields and Supersymmetry

2.6 . 2T(Z2) |

G(21)G(22) =

3(21 Ps 22)3 &1 T <2

Mode expansion




Fermionic fields and Supersymmetry

1
{Gn, Gm} = 2Ln+m —|— g (TLZ - 4) 5n—l—m,0
L, Gl = /2 —m) Gpam

IR and primary operators (NS and R)

* NS Sector: Superfield

®(2,2,0,0) = e(2,2) +0%(2, %) + 0(z,%Z) + 00t(z,%)
* R Sector: Ramond fields

C
G ="L 3

Doublets!!




Fermionic fields and Supersymmetry

1
{Gn, Gm} = 2Ln+m —|— g (TLZ - 4) 5n—l—m,0
L, Gl = /2 —m) Gpam

IR and primary operators (NS and R)

* NS Sector: Superfield

®(2,2,0,0) = e(2,2) +0%(2, %) + 0(z,%Z) + 00t(z,%)
* R Sector: Ramond fields ((77 (})

GH=T =

T 4

G() g oh
Doublets!!

G()%O(ﬁ'



Z, Symmetries

J/)%}z/ synumelry

Tirarmers- WWinrncer aém/t(fy
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Equivalent Coset constructions of the TIM

SUuU(2) SU(2), x SU(2);
SU(2)5
E7 (E7)1 X (E7)1
(E7)2
SUSY SU(2); x SU(2)-




Landau-Ginzburg description

-

o
€
5.
£

L= %(aMcD)2 + V(D)

V(®)=g,d+ gzq)z + 83(1)3 + g4<I>4 + P°




Nature of the QFT of the relevant deformations of TIM

V(®) = 1@ + go®° + 93P’ + 920" + ®°

Particles Non-Integrable

High T (particles)

Low T (kinks and
bound states thereof)

Asymmetrical kinks

Massless particles

Kinks






