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Abstract

We summarize and rethink as string/field duality the
recent progress we made in describing the 3D turbulence
as the low-temperature limit of the Gibbs statistics of
vortex surfaces. The talk is addressed to the String Field
community and the Fluid Dynamics community in the
hope that they join forces in solving the ancient problem of
turbulence.
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The Enigma of Turbulence

For the last 200 years, people are trying to solve a simple set of
equations

∂t~v + ~v · ~∇~v = ν∇2~v + ~∇p;
~∇ · ~v = 0;

The only parameter is the viscosity ν which should tend to zero
while keeping finite dissipation of energy

E = ν

∫
d3r~ω2;

~ω = ~∇× ~v;

We shall call this limit a turbulent limit. It makes the problem
universal and tantalizingly simple.
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The Enigma of Turbulence

It is known what happens in the turbulent limit, but we do not
know how to explain this and how to describe it quantitatively.

Instead of a unique solution depending smoothly on the initial
data, or some unique fixed point, we have a fixed manifold–
statistical distribution of vorticity structures with some universal
properties.

We do not even know the physical origin of this distribution,
not to mention its complexity and its multi-fractal properties,
far more complex than CFT.

The CFT is inapplicable here because of nonlocal effects. Con-
servation law ~∇ · ~v = ~∇ · ~ω = 0 would require conformal dimen-
sion d−1 = 2 for both velocity and vorticity which is impossible
mathematically and wrong experimentally.
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The Enigma of Turbulence

If you take a fresh look at the expression for energy dissipation,
it becomes clear that the vorticity ~ω should be singular in some
regions of space to compensate for the infinitesimal viscosity in
front.

Such singularities are known to exist, in particular in liquid he-
lium, where the viscosity is zero. These are vortex lines and
vortex surfaces.

Vortex lines have infinite velocity, but for the vortex surface the
velocity is finite. One can imagine the smeared velocity dis-
continuity, creating a large vorticity, such that its square would
compensate the viscosity in front.

As we shall shortly see, this is exactly what happens, but there
are some interesting details to work out ([1], [2]).
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The Enigma of Turbulence

To give an idea how the the vortex surface explains the dissipa-
tion, let us consider a local vicinity z → 0 of some point (x, y, 0)
on vortex surface and look at the balance of the singular terms,
involving the normal derivatives of tangent components of ve-
locity ~vt

vz∂z~vt = ν∂2
z~vt

For the solution to be finite in both directions, we need vz(0) =
0, then [3], [4]

~ω ∝ ∂z~vt ∝ N(z, h);

~vt ∝
1

2
∆~vt erf

(
z

h
√

2

)
;

h =

√
ν

−∂zvz
where N(z, h) is the normal distribution with variance h2.
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The Enigma of Turbulence

Now the enstrophy will involve the square of this Gaussian func-
tion

ν~ω2 ∝ ν(∆~vt)
2N(z, h)2 =

√
ν

2
√
π

√
−∂zvz(∆~vt)2N

(
z,

h√
2

)
;

In the limit ν → 0, h→ 0, we get a surface integral

E =

√
ν

2
√
π

∫
S

(∆~vt)
2
√
−∂zvz

This is the viscosity anomaly([1]), with the new factor
√
−∂zvz

which was assumed constant in [1] .
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The Enigma of Turbulence

The field/string duality we are advocating here starts from the
following idea. The dynamics and statistics of vortex surfaces in
the turbulent limit are defined by the Euler equation, if we only
take into account the anomalous dissipation.

The strongly fluctuating velocity and singular vorticity can be
described by a dual dynamics and statistics of vortex surfaces
in the same way as the fluctuating gauge field is described by a
fluctuating geometry in ADS-CFT correspondence.

The Duality in QFT has the strong coupling phase of the fluc-
tuating gauge field corresponding to the weak coupling phase of
the dual string theory and vice versa.

With some significant distinctions, the same kind of field-string
duality exists, as we believe, in the turbulence.



The Enigma
of Turbulence

Dynamics of
Vortex
Surfaces

Stable Vortex
Surfaces

Conservation
of Enstrophy

Energy
Pumping

References

Dynamics of Vortex Surfaces

Let us now describe the dynamics of vortex surfaces ([5], [6]).

The following ansatz describes the vortex surface vorticity:

~ω(~r) =

∫
Σ
d~Ωδ3

(
~X − ~r

)
where the 2-form

d~Ω ≡ dΓ ∧ d ~X = dξ1dξ2eab
∂Γ

∂ξa

∂ ~X

∂ξb

The conservation of vorticity

~∇ · ~ω = 0;

is built into this ansatz for arbitrary Γ(ξ).
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Dynamics of Vortex Surfaces

The function Γ(ξ) is defined modulo diffeomorphisms ξ ⇒ η(ξ)
and is conserved in Lagrange dynamics with velocity expressed
in terms of the vorticity surface by Biot-Savart law:

∂tΓ = 0;

∂t ~X = ~v( ~X);

~v(~r) = ~∇× ~Ψ(~r);

~Ψ(~r) = −
∫

d~Ω( ~X)

4π|~r − ~X|
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Dynamics of Vortex Surfaces

This function is related to the velocity discontinuity

Γ =

∫
∆~v · d~r;

∆~v = ~v
(
~X+
)
− ~v

(
~X−
)

The line integral does not depend on the path but only on its end
point, due to the lack of the vorticity flux through the surface.
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Dynamics of Vortex Surfaces

The Lagrange equations of motion for the surface were shown
to follow from the action

S =

∫
ΓdV −

∫
Hdt;

dV = dξ1dξ2dt
∂ ~X

∂ξ1
× ∂ ~X

∂ξ2
· ∂t ~X;

H =
1

2

∫
d3r~v2 =

1

2

∫
S

∫
S

d~Ω · d~Ω′

4π| ~X − ~X ′|
;

dV is the 3-volume swept by the surface area element in its
movement for the time dt.
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Dynamics of Vortex Surfaces

In addition to the conserved energy (which conservation is broken
by the viscosity anomaly), we also have conserved momentum

~P =

∫
d3~r~v =

1

3

∫
Γd~σ;

d~σ = d2ξ∂1
~X × ∂2

~X;

One can observe that the particular Γ = Γ∗[ ~X] minimizing this
Hamiltonian at fixed ~X provides a stationary solution of the
Lagrange-Euler equations, with the normal velocity vanishing on
the surface.
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Dynamics of Vortex Surfaces

In the case of the handle H on a surface, Γ acquires extra term
∆Γ =

∮
γ ∆~v · d~r when the point goes around one of the cycles

γ = {α, β} of the handle.

This ∆Γ does not depend on the path shape because there is no
normal vorticity at the surface, and thus there is no flux through
the surface. This topologically invariant ∆Γ represents the flux
through the handle cross-section.
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Dynamics of Vortex Surfaces

Figure: The flux through the red disk reduces to ∆Γ =
∮
γ

∆~v · d~r
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Dynamics of Vortex Surfaces

As a consequence, the velocity circulation around an arbitrary
contour C in 3D space, avoiding these surfaces, reduces to the
algebraic sum of such fluxes for all the handles linked to C.

This ambiguity in Γ makes our action multivalued as well.
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Stable Vortex Surfaces

The turbulence phenomenon starts with the instability of the
steady solutions of the Euler equation.

We expect it to eventually cover a certain stable manifold, like
the energy surface in an ergodic dynamical system.

In the turbulence case, this manifold should involve the constant
energy dissipation.

Let us consider a steady closed vortex surface S, to check whether
it can belong to this stable manifold.

In the outside space S+ : ∂S+ = S there is no vorticity, so the
flow can be described by a potential

vα(~r) = ∂αΦ+(~r); ∀~r ∈ S+;

∂αvα(~r) = ∂2
αΦ+(~r) = 0; ; ∀~r ∈ S+

vn(~r) = ∂nΦ+(~r) = 0; ∀~r ∈ S
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Stable Vortex Surfaces

The steady Euler equation

vβ∂βvα + ∂αp = 0;

∂αvα = 0;

is satisfied with this potential flow, given the pressure p satisfies
the Bernoulli equation

p+(~r) = −1

2

(
∂αΦ+(~r)

)2
; ∀~r ∈ S+;

The flow inside the volume S− bounded by the surface is stag-
nant: nothing comes through the surface, so the velocity must
be zero, and so is the potential and pressure inside.

p−(~r) = Φ−(~r) = 0; ∀~r ∈ S−;
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Stable Vortex Surfaces

Here is an example of such a potential flow corresponding to the
spherical vortex surface

Φ+(~r) =

(
1

2
+

1

3|~r|5

)(
a(x2 − z2) + b(y2 − z2)

)
;

Figure: Spherical Vortex surface with vanishing normal velocity
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Stable Vortex Surfaces

The normal velocity vanishes on the surface, but the tangent
velocity is finite – the fluid slides along the surface. As there is
no velocity inside, this creates the tangent discontinuity ∆vi, i =
x, y, and the corresponding delta function for vorticity

∆~vi(~r ∈ S) = ~∇iΓ(~r);

Γ(~r) = Φ+(~r ∈ S);

ωi = −eij∂jΓ(~r)δ(z), ωz = 0;

From here, using incompressibility, we arrive at an important
relation

−∂zv+
z = ∂iv

+
i = ~∇2

iΓ(~r ∈ S)

For the above example

Γ(~r) =
5

6

(
a(x2 − z2) + b(y2 − z2)

)
; ∀x2 + y2 + z2 = 1;
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Stable Vortex Surfaces

The Lagrange dynamics of an ideal fluid tells us that every point
moves with local velocity. This also applies to the vortex sur-
faces. In the local tangent plane, x, y

∂tz(x, y, t) = vz (x, y, z(x, y, t))

The small deviation δz from the steady shape

S : z = zS(x, y); vz (x, y, zS(x, y)) = 0

will exponentially grow (Kelvin-Helmholtz instability) or decay
with time

δz(x, y, t) ∝ exp (t∂zvz (x, y, zS(x, y)))

The instability is absent if ∂zvz (x, y, zS(x, y)) < 0.
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Stable Vortex Surfaces

This stability requirement is NOT satisfied for the above exam-
ple. The tangent Laplacian is not positive definite

~∇2
tΓ = −Γ = −5

6

(
a(x2 − z2) + b(y2 − z2)

)
Therefore, this solution is steady but not stable.

Our next goal is to compare the Euler and Navier-Stokes equa-
tions and find the stable subset of the phase space Γ, ~X of the
vortex surfaces.

For this purpose, we need to match the vortex surface ansatz
with the exact solution of the Navier-Stokes equation in a thin
boundary layer.
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Stable Vortex Surfaces

It was recently observed [1] that in addition to the Burgers-
Townsend sheet with the symmetric Gaussian profile of vorticity,
there is an asymmetric solution, expressed in the Hermite func-
tion with the negative fractional index.

This asymmetric solution decays as a Gaussian on one side but
only as a power on the other side of the sheet.

In other words, vorticity leaks from that sheet, unlike the Burgers-
Townsend sheet where it was confined to the thin layer.

Later, another important observation was made [7]. The asym-
metric sheet turned out to be the general solution of the Navier-
Stokes equation for the constant strain

Sαβ =
1

2
(∂αvβ + ∂βvα)
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Stable Vortex Surfaces

The eigenvalues of the strain add up to zero in virtue of incom-
pressibility, so there are two independent parameters here.

Ŝ = diag (λ1, λ2,−λ1 − λ2)

We can always assume that the eigenvalues are sorted in de-
creasing order. The Kelvin-Helmholtz stability demands that
λ1 + λ2 > 0.

The asymmetric solution exists when

λ1 ≥ λ2 > 0;

The special case considered in [1] corresponds to λ1 = λ2 > 0.
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Stable Vortex Surfaces

The vorticity of the generic solution is proportional to Hermite
function

ω ∝ exp

(
− z2

2h2

)
Hµ

(
z

h
√

2

)
;

µ = − λ2

λ1 + λ2
;

ω(z → +∞) ∝ (z)µ exp

(
− z2

2h2

)
;

ω(z → −∞) ∝ (−z)µ

There is also a mirror solution with z ⇒ −z.
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Stable Vortex Surfaces

For every finite λ1, λ2 vorticity decays at least on one side as a
negative fractional power |z|µ;µ < 0, which makes it unaccept-
able for the vortex surface statistics.
The Burgers-Townsend solution corresponds to the exceptional
case λ1 > 0, λ2 = 0. The solution reads

~v = {ax, bSh(z),−az};
S0
αβ = diag (a, 0,−a) ;

~ω = {−bS′h(z), 0, 0};

S′h(z) =
1

h
√

2π
exp

(
− z2

2h2

)
;

Sh(z) = erf

(
z

h
√

2

)
;

a =
ν

h2
;
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Stable Vortex Surfaces

In this case, the vorticity becomes Gaussian, and the velocity gap
becomes an error function. In the limit of h → 0 the vorticity
reduces to δ(z), and velocity gap reduces to sign(z).

These solutions for various ratios µ of eigenvalues were investi-
gated in [7]. An interesting case is negative λ2 (super-Townsend
in [7]). In that case µ < −1 so that power decay is even stronger
that in case of positive λ2.

The study of time evolution in each of these solutions showed a
decay to zero for the asymmetric case λ2 > 0, and instability for
the super-Townsend case λ2 < 0. Only in the Burgers-Townsend
case λ2 = 0 there was a stable solution which did not need any
supply of vorticity from ±∞.



The Enigma
of Turbulence

Dynamics of
Vortex
Surfaces

Stable Vortex
Surfaces

Conservation
of Enstrophy

Energy
Pumping

References

Stable Vortex Surfaces
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Figure: The vorticity profiles for asymmetric, Townsend and
super-Townsend strains
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Stable Vortex Surfaces

Figure: The vorticity in isotropic turbulence simulation[7]
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Stable Vortex Surfaces

We reach the following radical conclusion: the stable vortex sur-
faces only exist when the matrix of second derivatives of Γ sat-
isfies two conditions:

det ||∂i∂jΓ|| = 0;

∂2
i Γ > 0;

The meaning of the first condition is that Γ depends on only one
of the two coordinates in the tangent plane, up to a global linear
transformation of these coordinates.

The second condition means that the planar Laplacian of Γ must
be positive.
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Stable Vortex Surfaces

In the simplest spherical topology, one can parametrize the sur-
face by two Euler angles on a sphere S2.
The function of the azimuth ϕ is excluded by the requirement of
the Kelvin-Helmholtz stability (there are no periodic functions
with positive second derivative).
The dependence of the polar angle Γ(θ, ϕ) = γ(θ) is allowed, as
there is no periodicity in θ.
To provide the vanishing normal velocity for an arbitrary azimuth
ϕ tin general case of asymmetric tensor Wαβ with λ1 6= λ2 there
should be some nontrivial asymmetry of its shape :

ξ = (θ, ϕ);

~n(ξ) = (sin θ cosϕ, sin θ sinϕ, cos θ);

~X(ξ) = ρ(cos θ, ϕ)~n(ξ);

Γ(ξ) = γ(cos θ);
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Stable Vortex Surfaces

The condition of positive Laplacian in these variables can be
exactly resolved

~∇2
iΓ = (1− z2)γ′′(z)− 2zγ′(z) = 2ep(z);

γ(z) = 2 arctanh(z)

∫ z

1
ep(t) dt−

ep(z)
(
log(1− z2) + 2z arctanh(z)

)
This defines a stable subset of the phase space.

Γ(θ, ϕ), ~X(θ, ϕ)⇒ p(cos θ), ρ(cos θ, ϕ)
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Stable Vortex Surfaces

We have solved numerically the equation vn = 0 together with
the determinant equation detS = 0 on a sphere.
The plot of the corresponding functions γ(cos(θ)), λ = ~∇2γ is
presented here

LambdaFunc(cos(θ))

GammaFunc(cos(θ))

0.5 1.0 1.5 2.0 2.5 3.0
-50

50

100

150

200

Figure: γ(cosθ), λ(cos θ), with first 20 harmonics minimizing the
Hamiltonian



The Enigma
of Turbulence

Dynamics of
Vortex
Surfaces

Stable Vortex
Surfaces

Conservation
of Enstrophy

Energy
Pumping

References

Conservation of Enstrophy

For a consistency of this model of turbulence, the energy dissi-
pation itself must be conserved – only then we would have the
stationary process.

We also have to provide some source of energy coming through
the boundary conditions (large scale motions).

The energy pumping rate W must match the energy dissipation
rate E and therefore it also must be conserved.
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Conservation of Enstrophy

Let us study the general formula for the time derivative of the
energy dissipation in the Navier-Stokes equation

∂tE = 2ν

∫
d3r

�
���

���

vβ∂β

(
1

2
ω2
α

)
− ωαωβ∂βvα;

E =

√
ν

2
√
π

∫
S
dS
(
~∇Γ
)2√

~∇2Γ;

∂tE = 0;

The conservation of dissipation in our reduced vortex sheet dy-
namics is essential for the steady energy flow.
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Energy Pumping

We view our closed vortex surface as part of the ”ideal gas” of
vortex bubbles with low density such that we can neglect their
collision. This idealization can later be removed, but for now we
study such an ideal gas of vortex bubbles of various shapes and
strengths.
We assume that the thermostat of remaining (large) vortex struc-
tures does not create mean velocity (or we are studying our vor-
tex shell in a Galilean frame where this velocity vanishes).
The next invariant we can fix as a boundary condition for our
velocity is a constant strain Wαβ, by adding a linear term to the
Biot-Savart integral

vα = Wαβrβ − ~∇×
∫

d~Ω( ~X)

4π|~r − ~X|
;

Wαα = 0;
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Energy Pumping

This tensor is spatially uniform, but could be a particular real-
ization of a Gaussian random symmetric traceless tensor. Re-
markably, the presence of a uniform constant strain breaks the
time-reversal symmetry, but not the parity, as the strain is parity
even.

The eigenvalues a, b,−a− b of the random Gaussian symmetric
traceless matrix are distributed as

dP (a, b) =

|a− b||2a+ b||2b+ a|dadb exp

(
−a

2 + b2 + ab

σ2

)
;

We assume that with the positive a + b the normal strain ±λ
will be negative; otherwise, we redefine the sign of potential.
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Energy Pumping

The master equation vn = 0 becomes linear integral equation
for Γ (with ~N(~r) being the local normal vector )

~N(~r) · ~∇×
∫
S

dΓ ∧ d~r′

4π|~r − ~r′|
= ~N(~r) ·W · ~r; ∀~r ∈ S

The variance σ of the boundary strain W enters linearly here,
so one can rescale Γ = γσ after which γ will depend only of the
ratio b/a.

Comparing that with the viscosity anomaly we find the scaling
law

Γ ∼ σ ∼
(
E4

ν2

) 1
5



The Enigma
of Turbulence

Dynamics of
Vortex
Surfaces

Stable Vortex
Surfaces

Conservation
of Enstrophy

Energy
Pumping

References

Energy Pumping

The Wilson loop factor for this field is calculable [8] as a multi-
ple integral over the zero modes of this solution: center of the
surface, O(3) rotation matrix needed to diagonalize the strain
W and some other auxiliary parameters related to intersection
of the loop with the surface.

This solution is similar to the instanton in gauge field theory. At
the same time it involves a surface of singular vorticity, and in
this aspect it is similar to the string picture of QCD, where the
gauge field strength is also confined to the surface.

This analogy does not go further, as the stability condition of
the vortex surface significantly reduces the degrees of freedom,
effectively making this a one-dimensional theory rather than a
full string theory.
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