Solutions to Problems for Lecture \#1

1. Add appropriate edges of weight 0 and weight 1 and use Δ-factors to count the (perfect) matchings of the two graphs shown below.

As indicated in the hint, we begin by adding some vertices and edges as shown:

and applying four reverse spider moves:

This gives us a weighted Aztec diamond graph of order 3. Now we do $a, b, c, d \rightarrow A, B, C, D$ transformations inside the nine circles:

After we peel off edges and contract, we get a weighted Aztec diamond graph of order 2 .

Now we do $a, b, c, d \rightarrow A, B, C, D$ transformations inside the four circles:

After we peel off edges and contract, we get a weighted Aztec diamond graph of order 1 .

The Δ-factors we encountered along the way were $2,2,2,2$ (for the reverse spider moves); $2,1 / 2,2,1 / 2,2,1 / 2,2,1 / 2,2$ (in the order 3 Aztec diamond graph); $5 / 4,5 / 4,5 / 4,5 / 4$ (in the order 2 Aztec diamond graph); and 8/25 (in the order 1 Aztec diamond graph). Multiplying all these factors together we get 25 .

For the second problem, we follow the same procedure.

The Δ-factors are $2,2,2,2,2$ for the reverse spider moves; $1 / 2,1,1 / 2$, $1,1 / 2,1,1 / 2,1,1 / 2$ for the next step; $5 / 4,5 / 4,5 / 4,5 / 4$ for the next step; and lastly $32 / 25$. The product is 50 .
2. Use Ciucu factorization to count the matchings of the graphs from problem 1.

Cutting the graphs as dictated by the definition of G^{+}and G^{-}we get

There are many forced edges:

We find that when the forced edges are removed, we are left with subgraphs consisting of an octagon that shares an edge with a square. This graph has three matchings of respective weights 1,1 , and $1 / 2$, which sum to $5 / 2$. So Ciucu's formula gives us $2^{2}(5 / 2)(5 / 2)=25$ and $2^{3}(5 / 2)(5 / 2)=50$ as the respective numbers of matchings of the two graphs.

