Combinatorics and Exact Enumeration in Dimer Models

Lecture \#1
James Propp, UMass Lowell (with helpful comments from Travis Scrimshaw)

> ITS Summer School on Dimers August 14,2023

Slides for this talk and the group work assignment are at

$$
\begin{aligned}
& \text { http://faculty.uml.edu/jpropp/its1.pdf and } \\
& \text { http://faculty.uml.edu/jpropp/its-P1.pdf }
\end{aligned}
$$

I. Introduction

From dimer covers ...

... to tilings

Nomenclature

"Matching" means "perfect matching", aka 1-factor, aka dimer cover.

A weighted graph is a graph with nonnegative real weights assigned to its edges. (Unmarked edges have weight 1.)

The weight of a matching is the product of the weights of its constituent edges. Enumerating the matchings means computing the sum of the weights of all the matchings of G, denoted by $M(G)$.

The union of two squares that share an edge is a domino.
The union of two equilateral triangles that share an edge is a lozenge or rhombus.

The "1-dimensional" theory of tilings

The number of domino tilings of a 2 -by- n rectangle (call it T_{n}) is the coefficient of x^{n} in the generating function

$$
1+1 x+2 x^{2}+3 x^{3}+\cdots=\frac{1}{1-x-x^{2}}
$$

The "1-dimensional" theory of tilings

More generally, for fixed m, the number of domino tilings of an m-by- n rectangle (call it $T(m, n)$) is the coefficient of x^{n} in a rational generating function.

Idea of proof: Keep track of the number of all ways to tile an m-by- n rectangle with lots of kinds of ragged right edge; set up joint first-order recurrence relations linking all of them.

The "1-dimensional" theory of tilings

Still unsolved (Stanley 1985): When this rational function is expressed in reduced form, is the denominator always of degree $2^{\lfloor(m+1) / 2\rfloor}$?

Lagarias proved that it's true when $m+1$ is an odd prime. So for instance, the integer sequence

$$
T(100,0), T(100,1), T(100,2), \ldots
$$

satisfies a linear recurrence of order $1,125,899,906,842,624$ (but no smaller).

Not very useful for enumeration.

II. Counting lozenge tilings of a regular hexagon

Counting lozenge tilings of a regular hexagon

Counting lozenge tilings of a regular hexagon

Counting lozenge tilings of a regular hexagon

$$
\begin{aligned}
& 123 \\
& 12 \\
& 12 \\
& 1 \\
& 1 \\
& 4 \\
& 4 \\
& 3 \\
& 78 \\
& 7 \\
& 6 \\
& 5 \\
& 4
\end{aligned}
$$

Counting lozenge tilings of a regular hexagon

$$
\left.\begin{array}{lllllll}
1 & 2 & 3 & 7 & 8 & 9 \\
& 1 & 2 & 4 & 7 & 8
\end{array}\right)
$$

Counting lozenge tilings of a regular hexagon

These are semi-strict Gelfand patterns: there is weak increase from left to right along downward-sloping diagonals and strict increase from left to right along upward-sloping diagonals.

There is a bijection between lozenge tilings of the regular hexagon with side-length a and semi-strict Gelfand patterns with top row

$$
12 \ldots a \quad 2 a+1 \quad 2 a+2 \ldots 3 a
$$

so it suffices to count those.
Let $V\left(x_{1}, \ldots, x_{n}\right)$ be the number of semi-strict Gelfand patterns with top row $x_{1} \ldots x_{n}$.

Counting lozenge tilings of a regular hexagon

Claim (Carlitz and Stanley):

$$
V\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n} \frac{x_{j}-x_{i}}{j-i}
$$

Proof: We use induction on n. The claim is trivial for $n=1$: $V\left(x_{1}\right)=1$.

Counting lozenge tilings of a regular hexagon

From 1 to 2:
Define the modified summation operator ${ }^{L} \sum$ by

$$
\sum_{i=s}^{t} f(i)=\sum_{i=s}^{t-1} f(i)
$$

whenever $s<t$. Then

$$
V\left(x_{1}, x_{2}\right)=\sum_{y_{1}=x_{1}}^{x_{2}} V\left(y_{1}\right)={ }^{L} \sum_{y_{1}=x_{1}}^{x_{2}} 1=x_{2}-x_{1}=\frac{x_{2}-x_{1}}{2-1}
$$

Counting lozenge tilings of a regular hexagon

From 2 to 3:
Extend the definition of ${ }^{L} \sum$ by putting

$$
\begin{aligned}
& \sum_{i=s}^{s} f(i)=0 \text { and } \\
& \sum_{i=s}^{t} f(i)=-\sum_{i=t}^{s} f(i) \text { for } s>t
\end{aligned}
$$

so that

$$
\sum_{i=r}^{s} f(i)+\sum_{i=s}^{t} f(i)=\sum_{i=r}^{t} f(i)
$$

for all integers r, s, t.

Counting lozenge tilings of a regular hexagon

 Define$$
V\left(x_{1}, x_{2}, x_{3}\right)={ }^{L} \sum_{y_{1}=x_{1}}^{x_{2}} \sum_{y_{2}=x_{2}}^{x_{3}} V\left(y_{1}, y_{2}\right)
$$

for all integers x_{1}, x_{2}, x_{3}. Now use factor exhaustion:
(1) Show that $V\left(x_{1}, x_{2}, x_{3}\right)$, like $\frac{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}{(2-1)(3-1)(3-2)}$, is a homogeneous polynomial of degree 3 in x_{1}, x_{2}, x_{3}.
(2) Show that this sum vanishes when $x_{1}=x_{2}, x_{1}=x_{3}$, or $x_{2}=x_{3}$.
(3) Show that $V\left(x_{1}, x_{2}, x_{3}\right)$ and $\frac{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}{(2-1)(3-1)(3-2)}$ have the same coefficient of $x_{2} x_{3}^{2}$.

For full details, see section 2 of Cohn et al. 1998.

Counting lozenge tilings of a regular hexagon

From this approach one can readily derive Macdonald's formula for the number of lozenge tilings of the equiangular hexagon with side-lengths a, b, c, a, b, c :

$$
\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
$$

An equivalent formula was given by MacMahon for the number of plane partitions whose 3-dimensional Young diagram fits in an a-by-b-by-c box.
III. Counting domino tilings of an Aztec diamond The region shown below is an Aztec diamond of order 3.

One can enumerate the matchings of the Aztec diamond of order n using the same kind of factor-exhaustion method we used for lozenge tilings of hexagons; see Elkies et al. 1992.

Instead, I'll use the graph-mutation method (sometimes called "urban renewal") that grew out of M. Fisher's work on lattice models in statistical mechanics.

Pruning leaves

Suppose G is a weighted graph with a vertex v of degree 1 joined to its sole neighbor w by an edge of weight c. Let G^{\prime} be the weighted graph obtained from G by removing v and w and the edge between them. Then $M(G)=c M(H)$.

\downarrow
$<$

Contracting away degree-2 vertices

Suppose G is a weighted graph with a vertex v of degree 2 joined to neighbors u and w by edges of weight c. Let G^{\prime} be the weighted graph obtained from G by removing u and w and joining v to every vertex adjacent to u or w (using the same weight). Then $M(G)=c M(H)$.

Spider moves

Suppose G is as shown on the left and H is as shown on the right, with $\Delta=a c+b d, A=c / \Delta, B=d / \Delta, C=a / \Delta$, and $D=b / \Delta$, with all external edges and their weights identical. Then $M(G)=\Delta M(H)$.

Why the formula holds

$$
(a c+b d)=(\Delta)(1)
$$

Why the formula holds

a

C

$$
(a)=(\Delta)(C)
$$

Why the formula holds

$(1)=(\Delta)(A C+B D)$

All moves are reversible

The reverse spider move: Suppose G is as shown on the left and H is as shown on the right, with $\Delta=a c+b d, A=c / \Delta$, $B=d / \Delta, C=a / \Delta$, and $D=b / \Delta$, with all external edges and their weights identical. Then $M(G)=\Delta M(H)$.

Reducing an Aztec diamond of order $2 \ldots$

Reducing an Aztec diamond of order $2 \ldots$

. . . to a weighted Aztec diamond of order 1

A recurrence for matchings of Aztec diamonds

So letting G_{n} denote the unweighted Aztec diamond graph of order n, we have

$$
\begin{aligned}
M\left(G_{2}\right) & =2^{4} \cdot 2^{-2} \cdot M\left(G_{1}\right) \\
& =2^{2} \cdot M\left(G_{1}\right) \\
& =2^{2} \cdot 2^{1} \\
& =2^{3}
\end{aligned}
$$

More generally, $M\left(G_{n}\right)=2^{n} M\left(G_{n-1}\right)$, so we obtain the formula of Elkies et al.:

$$
\begin{aligned}
M\left(G_{n}\right) & =2^{n} 2^{n-1} \cdots 2^{1} \\
& =2^{n+(n-1)+\cdots+1} \\
& =2^{n(n+1) / 2}
\end{aligned}
$$

Not just for Aztec diamonds

We can use this kind of recurrence on weighted graphs to count matchings of squares.

Not just for Aztec diamonds

Not just for Aztec diamonds

Not just for Aztec diamonds

Not just for Aztec diamonds

Not just for Aztec diamonds

Not just for Aztec diamonds

Not just for Aztec diamonds

Multiply the Δ-factors:

$$
[(1)(2)(1)(2)(2)(2)(1)(2)(1)]\left[\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)\right]\left[\left(\frac{32}{9}\right)\right]=36
$$

Exercise 1

Stick on new vertices and edges of weight 1 and use Δ-factors to count matchings of the two graphs shown below (known as fortress graphs).

Exercise 1

I'll get you started with the first one:

Exercise 1

I'll get you started with the first one:

Not just for counting

Graph-mutation can do more than count matchings; it can also calculate the probability that a given edge belongs to a random matching (where the probabilities associated with individual matchings are just their weights, normalized to add up to 1).

In fact, graph-mutation lets you sample from this probability distribution! See Propp 2003. Also see Helfgott's elegant implementation ren.c.

IV. Ciucu's factorization theorem

Suppose G is a weighted bipartite graph embedded in the plane and ℓ is a line in the plane (horizontal for definiteness) such that G with its weight function is symmetric about ℓ. 2-color the vertices white and black.

Ciucu's factorization theorem

Suppose G is a weighted bipartite graph embedded in the plane and ℓ is a line in the plane (horizontal for definiteness) such that G with its weight function is symmetric about ℓ. 2-color the vertices white and black.

Ciucu's factorization theorem

Suppose that $2 k$ vertices of G lie on ℓ and that removing these vertices disconnects G. Label them $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, a_{k}, b_{k} from left to right, and remove edges above all white a_{i} 's and black b_{i} 's and below all black a_{i} 's and white b_{i} 's. Halve the weight of each edge on ℓ.

Ciucu's factorization theorem

Suppose that $2 k$ vertices of G lie on ℓ and that removing these vertices disconnects G. Label them $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, a_{k}, b_{k} from left to right, and remove edges above all white a_{i} 's and black b_{i} 's and below all black a_{i} 's and white b_{i} 's. Halve the weight of each edge on ℓ.

Ciucu's factorization theorem

The new weighted graph is disconnected; let G^{+}and G^{-}be its upper and lower components respectively.

Theorem (Ciucu 1997):

$$
M(G)=2^{k} M\left(G^{+}\right) M\left(G^{-}\right)
$$

Example: When G is a $2 k$-by- $2 k$ square, G^{+}and G^{-}are isomorphic, so $M(G)$ is 2^{k} times a perfect square.

Sketch of proof

I'll confine attention to the special case in which there are only white vertices on ℓ.

Sketch of proof

We can divide the matchings of G into 2^{3} classes according to whether a_{1}, a_{2}, a_{3} match up or down.

Sketch of proof

I'll show you a bijection that turns a down-up-down matching into a down-down-down matching.

Sketch of proof

Consider the matching (shown in red) obtained by reflecting the down-up-down matching (shown in black before) across ℓ.

Sketch of proof

When we superimpose the two matchings we get a 2-factor of G with a cycle through a_{2}.

Sketch of proof

Replace the black edges in that cycle by red edges and vice versa.

Sketch of proof

The edges that are now colored black form a different matching of $G \ldots$

Sketch of proof

... and it's of type down-down-down. This construction shows more generally that all eight classes are equinumerous.

Sketch of proof

Moreover, in the down-down-down class, all the b-vertices must match upward!

Sketch of proof

So, the number of matchings of G equals 8 times the number of matchings in which a's match down and b 's match up.

Sketch of proof

But removing the now-forbidden edges gives a disconnected graph: a copy of G^{+}and a copy of G^{-}.

Exercise 2

Use Ciucu factorization to count the matchings of the graphs from homework problem 1.

References with links

M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, Journal of Combinatorial Theory, Series A 77 (1997)
H. Cohn, M. Larsen, and J. Propp, The shape of a typical boxed plane partition, New York Journal of Mathematics 4, 137-165 (1998)
N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating sign matrices and domino tilings, Journal of Algebraic Combinatorics 1, 111-132, 219-234 (1992) (part two is here)
J. Propp, Generalized domino-shuffling, Theoretical Computer Science 303, 267-301 (2003)
R. Stanley, On dimer coverings of rectangles of fixed width, Discrete Applied Mathematics 12, 81-87 (1985).
... and these slides and homework 1.

