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I. Introduction
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From dimer covers ...
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... to tilings
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Nomenclature

“Matching” means “perfect matching”, aka 1-factor, aka dimer
cover.

A weighted graph is a graph with nonnegative real weights
assigned to its edges. (Unmarked edges have weight 1.)

The weight of a matching is the product of the weights of its
constituent edges. Enumerating the matchings means
computing the sum of the weights of all the matchings of G ,
denoted by M(G ).

The union of two squares that share an edge is a domino.

The union of two equilateral triangles that share an edge is a
lozenge or rhombus.
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The “1-dimensional” theory of tilings

The number of domino tilings of a 2-by-n rectangle (call it Tn)
is the coefficient of xn in the generating function

1 + 1x + 2x2 + 3x3 + · · · =
1

1− x − x2
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The “1-dimensional” theory of tilings

More generally, for fixed m, the number of domino tilings of
an m-by-n rectangle (call it T (m, n)) is the coefficient of xn in
a rational generating function.

Idea of proof: Keep track of the number of all ways to tile an
m-by-n rectangle with lots of kinds of ragged right edge; set
up joint first-order recurrence relations linking all of them.
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The “1-dimensional” theory of tilings

Still unsolved (Stanley 1985): When this rational function is
expressed in reduced form, is the denominator always of degree
2b(m+1)/2c?

Lagarias proved that it’s true when m + 1 is an odd prime. So
for instance, the integer sequence

T (100, 0),T (100, 1),T (100, 2), . . .

satisfies a linear recurrence of order 1,125,899,906,842,624
(but no smaller).

Not very useful for enumeration.
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II. Counting lozenge tilings of a regular hexagon
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Counting lozenge tilings of a regular hexagon
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Counting lozenge tilings of a regular hexagon

11 / 64



Counting lozenge tilings of a regular hexagon
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Counting lozenge tilings of a regular hexagon
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Counting lozenge tilings of a regular hexagon

These are semi-strict Gelfand patterns: there is weak increase
from left to right along downward-sloping diagonals and strict
increase from left to right along upward-sloping diagonals.

There is a bijection between lozenge tilings of the regular
hexagon with side-length a and semi-strict Gelfand patterns
with top row

1 2 . . . a 2a + 1 2a + 2 . . . 3a

so it suffices to count those.

Let V (x1, . . . , xn) be the number of semi-strict Gelfand
patterns with top row x1 . . . xn.
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Counting lozenge tilings of a regular hexagon

Claim (Carlitz and Stanley):

V (x1, . . . , xn) =
∏

1≤i<j≤n

xj − xi
j − i

Proof: We use induction on n. The claim is trivial for n = 1:
V (x1) = 1.
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Counting lozenge tilings of a regular hexagon

From 1 to 2:

Define the modified summation operator L
∑

by

L
t∑

i=s

f (i) =
t−1∑
i=s

f (i)

whenever s < t. Then

V (x1, x2) = L

x2∑
y1=x1

V (y1) = L

x2∑
y1=x1

1 = x2 − x1 =
x2 − x1

2− 1
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Counting lozenge tilings of a regular hexagon

From 2 to 3:

Extend the definition of L
∑

by putting

L
s∑

i=s

f (i) = 0 and

L
t∑

i=s

f (i) = − L
s∑

i=t

f (i) for s > t

so that

L
s∑

i=r

f (i) + L
t∑

i=s

f (i) = L
t∑

i=r

f (i)

for all integers r , s, t.
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Counting lozenge tilings of a regular hexagon
Define

V (x1, x2, x3) = L

x2∑
y1=x1

L

x3∑
y2=x2

V (y1, y2)

for all integers x1, x2, x3. Now use factor exhaustion:

(1) Show that V (x1, x2, x3), like (x2−x1)(x3−x1)(x3−x2)
(2−1)(3−1)(3−2) , is a

homogeneous polynomial of degree 3 in x1, x2, x3.

(2) Show that this sum vanishes when x1 = x2, x1 = x3, or
x2 = x3.

(3) Show that V (x1, x2, x3) and (x2−x1)(x3−x1)(x3−x2)
(2−1)(3−1)(3−2) have the

same coefficient of x2x
2
3 .

For full details, see section 2 of Cohn et al. 1998.
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Counting lozenge tilings of a regular hexagon

From this approach one can readily derive Macdonald’s
formula for the number of lozenge tilings of the equiangular
hexagon with side-lengths a, b, c , a, b, c :

a∏
i=1

b∏
j=1

c∏
k=1

i + j + k − 1
i + j + k − 2

An equivalent formula was given by MacMahon for the
number of plane partitions whose 3-dimensional Young
diagram fits in an a-by-b-by-c box.
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III. Counting domino tilings of an Aztec diamond
The region shown below is an Aztec diamond of order 3.

One can enumerate the matchings of the Aztec diamond of
order n using the same kind of factor-exhaustion method we
used for lozenge tilings of hexagons; see Elkies et al. 1992.

Instead, I’ll use the graph-mutation method (sometimes called
“urban renewal”) that grew out of M. Fisher’s work on lattice
models in statistical mechanics.
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Pruning leaves

Suppose G is a weighted graph with a vertex v of degree 1
joined to its sole neighbor w by an edge of weight c . Let G ′

be the weighted graph obtained from G by removing v and w
and the edge between them. Then M(G ) = c M(H).
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Contracting away degree-2 vertices
Suppose G is a weighted graph with a vertex v of degree 2
joined to neighbors u and w by edges of weight c . Let G ′ be
the weighted graph obtained from G by removing u and w and
joining v to every vertex adjacent to u or w (using the same
weight). Then M(G ) = c M(H).
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Spider moves

Suppose G is as shown on the left and H is as shown on the
right, with ∆ = ac + bd , A = c/∆, B = d/∆, C = a/∆, and
D = b/∆, with all external edges and their weights identical.
Then M(G ) = ∆ M(H).
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Why the formula holds

(ac + bd) = (∆)(1)

24 / 64



Why the formula holds

(a) = (∆)(C )
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Why the formula holds

(1) = (∆)(AC + BD)
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All moves are reversible

The reverse spider move: Suppose G is as shown on the left
and H is as shown on the right, with ∆ = ac + bd , A = c/∆,
B = d/∆, C = a/∆, and D = b/∆, with all external edges
and their weights identical. Then M(G ) = ∆ M(H).
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Reducing an Aztec diamond of order 2 . . .
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Reducing an Aztec diamond of order 2 . . .
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Reducing an Aztec diamond of order 2 . . .
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Reducing an Aztec diamond of order 2 . . .
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Reducing an Aztec diamond of order 2 . . .
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. . . to a weighted Aztec diamond of order 1
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A recurrence for matchings of Aztec diamonds
So letting Gn denote the unweighted Aztec diamond graph of
order n, we have

M(G2) = 24 · 2−2 ·M(G1)

= 22 ·M(G1)

= 22 · 21

= 23

More generally, M(Gn) = 2n M(Gn−1), so we obtain the
formula of Elkies et al.:

M(Gn) = 2n 2n−1 · · · 21

= 2n+(n−1)+···+1

= 2n(n+1)/2
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Not just for Aztec diamonds

We can use this kind of recurrence on weighted graphs to
count matchings of squares.
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Not just for Aztec diamonds
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Not just for Aztec diamonds
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Not just for Aztec diamonds
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Not just for Aztec diamonds
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Not just for Aztec diamonds
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Not just for Aztec diamonds

Multiply the ∆-factors:

[(1)(2)(1)(2)(2)(2)(1)(2)(1)][(
3
4

)(
3
4

)(
3
4

)(
3
4

)][(
32
9

)] = 36
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Exercise 1

Stick on new vertices and edges of weight 1 and use ∆-factors
to count matchings of the two graphs shown below (known as
fortress graphs).
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Exercise 1
I’ll get you started with the first one:
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Exercise 1
I’ll get you started with the first one:
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Not just for counting

Graph-mutation can do more than count matchings; it can also
calculate the probability that a given edge belongs to a random
matching (where the probabilities associated with individual
matchings are just their weights, normalized to add up to 1).

In fact, graph-mutation lets you sample from this probability
distribution! See Propp 2003. Also see Helfgott’s elegant
implementation ren.c.
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IV. Ciucu’s factorization theorem

Suppose G is a weighted bipartite graph embedded in the
plane and ` is a line in the plane (horizontal for definiteness)
such that G with its weight function is symmetric about `.
2-color the vertices white and black.
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Ciucu’s factorization theorem

Suppose G is a weighted bipartite graph embedded in the
plane and ` is a line in the plane (horizontal for definiteness)
such that G with its weight function is symmetric about `.
2-color the vertices white and black.
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Ciucu’s factorization theorem
Suppose that 2k vertices of G lie on ` and that removing
these vertices disconnects G . Label them a1, b1, a2, b2, . . . ,
ak , bk from left to right, and remove edges above all white ai ’s
and black bi ’s and below all black ai ’s and white bi ’s. Halve
the weight of each edge on `.
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Ciucu’s factorization theorem

The new weighted graph is disconnected; let G+ and G− be
its upper and lower components respectively.

Theorem (Ciucu 1997):

M(G ) = 2k M(G+) M(G−)

Example: When G is a 2k-by-2k square, G+ and G− are
isomorphic, so M(G ) is 2k times a perfect square.
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Sketch of proof
I’ll confine attention to the special case in which there are only
white vertices on `.
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Sketch of proof
We can divide the matchings of G into 23 classes according to
whether a1, a2, a3 match up or down.
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Sketch of proof

I’ll show you a bijection that turns a down-up-down matching
into a down-down-down matching.
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Sketch of proof
Consider the matching (shown in red) obtained by reflecting
the down-up-down matching (shown in black before) across `.
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Sketch of proof

When we superimpose the two matchings we get a 2-factor of
G with a cycle through a2.
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Sketch of proof
Replace the black edges in that cycle by red edges and vice
versa.
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Sketch of proof

The edges that are now colored black form a different
matching of G . . .
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Sketch of proof

. . . and it’s of type down-down-down. This construction shows
more generally that all eight classes are equinumerous.
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Sketch of proof

Moreover, in the down-down-down class, all the b-vertices
must match upward!
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Sketch of proof

So, the number of matchings of G equals 8 times the number
of matchings in which a’s match down and b’s match up.
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Sketch of proof

But removing the now-forbidden edges gives a disconnected
graph: a copy of G+ and a copy of G−.
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Exercise 2

Use Ciucu factorization to count the matchings of the graphs
from homework problem 1.
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