Combinatorics and Exact Enumeration in Dimer Models

Lecture \#2
James Propp, UMass Lowell

ITS Summer School on Dimers
August 16, 2023

Slides for this talk and the group work assignment are at
http://faculty.uml.edu/jpropp/its2.pdf and
http://faculty.uml.edu/jpropp/its-P2.pdf

I. Temperley's bijection

There is a bijection between domino tilings of the $(2 m-1)$-by- $(2 n-1)$ rectangle with a corner removed and spanning trees of the m-by- n grid graph.

Temperley's bijection

There is a bijection between domino tilings of the $(2 m-1)$-by- $(2 n-1)$ rectangle with a corner removed and spanning trees of the m-by- n grid graph.

Temperley's bijection

There is a bijection between domino tilings of the $(2 m-1)$-by- $(2 n-1)$ rectangle with a corner removed and spanning trees of the m-by- n grid graph.

Temperley's bijection

There is a bijection between domino tilings of the $(2 m-1)$-by- $(2 n-1)$ rectangle with a corner removed and spanning trees of the m-by- n grid graph.

Counting spanning trees

Matrix-tree theorem: Given a simple graph G with vertices v_{1}, \ldots, v_{n}, let $A_{i j}(1 \leq i, j \leq n)$ be -1 if v_{i} and v_{j} are adjacent and let $A_{i j}$ be $\operatorname{deg} i$ if $i=j$ (and 0 otherwise).

Then for all $1 \leq i \leq n$, the $(n-1)$-by- $(n-1)$ matrix obtained from A by crossing out the ith row and i th column of A has determinant equal to the number of spanning trees of G.

Counting spanning trees

For instance, to count the domino tilings of a 3 -by- 3 square with a corner removed, use Temperley's bijection to replace them by counting spanning trees of a 2-by-2 grid graph, and then evaluate a 3-by-3 subdeterminant of the associated 4-by-4 matrix.

$$
\left|\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right|=4
$$

Dimer covers and spanning trees

For generalizations of Temperley's bijection, see Kenyon et al. (2000) and Kenyon-Sheffield (2004).
II. Lindström's Lemma

Lindström's Lemma

Lindström's Lemma

Lindström's Lemma

Given an acyclic finite directed graph G with n source nodes s_{1}, \ldots, s_{n} and n terminal nodes t_{1}, \ldots, t_{n}, let $A_{i, j}$
($1 \leq i, j \leq n$) be the number of paths from s_{i} to t_{j}.
Suppose that the only way to have n nonintersecting paths joining the initial nodes to the terminal nodes is to join s_{i} to t_{i} for $1 \leq i \leq n$.

Then the determinant of A (aka the Gessel-Viennot matrix) is the number of families of n pairwise-nonintersecting lattice paths from the source nodes to the terminal nodes.

Lindström's Lemma

Special case $n=2$: the number of pairs of nonintersecting paths joining s_{1} to t_{1} and s_{2} to t_{2} equals $A_{1,1} A_{2,2}-A_{1,2} A_{2,1}$.

Proof-idea: Use path-switching to show that the number of pairs of intersecting paths joining s_{1} to t_{1} and s_{2} to t_{2} equals $A_{1,2} A_{2,1}$.

Lindström's Lemma

Application of Lindström's Lemma: The number of lozenge tilings of the hexagon of side 3 is

$$
\left|\begin{array}{lll}
\binom{6}{3} & \binom{6}{2} & \binom{6}{1} \\
\binom{6}{4} & \binom{6}{3} & \binom{6}{2} \\
\binom{6}{5} & \binom{6}{4} & \binom{6}{3}
\end{array}\right|=980
$$

Domino tilings and Randall paths

Domino tilings and Randall paths

Hence the number of domino tilings of the 4 -by- 4 square is

$$
\left|\begin{array}{cc}
12 & 6 \\
6 & 6
\end{array}\right|=36
$$

The double-dimer perspective

A way to unify these two constructions is to imagine we are superimposing two dimer configurations, one fixed (though not quite a dimer cover) and one varying. The fixed near-cover will omit some vertices and include some extra vertices outside the graph under consideration.

The fixed near-matching should be "extremal" in the sense that if you take its symmetric difference with any (perfect) matching of the graph, you'll get a union of paths and doubled edges (no cycles of length >2).

The double-dimer perspective

The double-dimer perspective

The double-dimer perspective

The double-dimer perspective

The double-dimer perspective

\bullet	0	\bullet	\bigcirc	\bullet	\bigcirc
\bigcirc	\bullet	0	\bullet	0	\bullet
\bullet	0	\bullet	\bigcirc	\bullet	0
\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bullet
-	0	\bullet	\bigcirc	\bullet	0
\bigcirc	\bullet	0	\bullet	0	\bullet

The double-dimer perspective

The double-dimer perspective

The double-dimer perspective

The directed double-dimer perspective

Apply Lindström's Lemma to lozenge tilings of this region:

The directed double-dimer perspective
Orient a fixed extremal near-cover from black to white:

The directed double-dimer perspective

 Orient the varying cover from white to black:

The directed double-dimer perspective Shrink away the black vertices:

The directed double-dimer perspective

The number of tilings is

$$
\left|\begin{array}{ccc}
14 & 5 & 0 \\
5 & 6 & 1 \\
0 & 1 & 2
\end{array}\right|=104
$$

Exercise 3

Use Lindström's lemma to count matchings of the two fortress graphs we've looked at. Here's one of them:

Exercise 3

Orient a fixed extremal near-cover from black to white:

Exercise 3

Orient the varying cover from white to black:

Exercise 3

Shrink away the black vertices:

III. Permanents and determinants

The number of perfect matchings of a bipartite planar graph G with $2 n$ vertices (n black, n white) is equal to the permanent of the n-by- n bipartite adjacency matrix A whose i, j th entry is 1 or 0 according to whether the i th black vertex is adjacent to the j th white vertex.

This seems useless, since permanents (unlike determinants) are hard to compute.

But Kasteleyn showed if G is planar, then one can tamper with the signs of the nonzero elements of A (or, more generally, replace them by complex numbers of norm 1) in such a way that in the resulting matrix K, all nonzero contributions to the determinant interfere constructively, so that \mid det $K \mid$ is the number of matchings.

Determinants and matchings

Sometimes you can just take $K=A$ (e.g., if G is a 6 -cycle, or more generally a $4 k+2$-cycle):

$$
\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right|=2
$$

Determinants and matchings

But usually you need to make changes (e.g., if G is a 4-cycle, or more generally a $4 k$-cycle):

$$
\left|\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right|=0
$$

Determinants and matchings

But usually you need to make changes (e.g., if G is a 4-cycle, or more generally a $4 k$-cycle):

$$
\left|\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right|=2
$$

Determinants and matchings

Kasteleyn proved that if G is a bipartite plane graph, there is always a way to assign signs to its edges so that the product of the signs around a face is +1 or -1 according to whether the number of edges around the face is $2(\bmod 4)$ or $0(\bmod 4)$.

This gives a matrix whose determinant has magnitude equal to the number of perfect matchings of G.
(Kasteleyn used $2 n$-by- $2 n$ matrices; Percus noticed that n-by- n matrices could be used instead.)

Determinants and matchings

You can also use complex numbers as weights, as long (reading around each face-cycle of edges) the product of the weights of the 1 st, 3 rd, 5 th, . . . edges is either equal to, or the negative of, the product of the weights of the $2 \mathrm{nd}, 4 \mathrm{th}, 6$ th, ...edges, according to whether the number of edges around the face is $2(\bmod 4)$ or $0(\bmod 4)$.

For instance, in a square grid graph, we could put weight 1 on all horizontal edges and weight i on all vertical edges.

Determinants and matchings

Kasteleyn showed that for m, n even, the number of domino tilings of an m-by- n board is

$$
\prod_{j=1}^{m / 2} \prod_{k=1}^{n / 2}\left(4 \cos ^{2} \frac{\pi j}{m+1}+4 \cos ^{2} \frac{\pi k}{n+1}\right),
$$

the product of the eigenvalues of K.
For my version of his proof, see Propp 2014.

The inverse Kasteleyn matrix

The entries of K^{-1} are important in statistical mechanics. Specifically, if the i th black vertex is adjacent to the j th white vertex, then (the magnitude of) the i, j entry of K^{-1} equals the probability that a random matching of the graph matches the i th black vertex to the j th white vertex.

This is an easy consequence of the cofactor formula for the inverse of a matrix.

The rate at which these correlations decay is hugely important for understanding random dimer covers.

Non-planar graphs

If G can be embedded on a surface of genus g, then we can write the number of matchings of G as a sum of 4^{g} determinants.

This is especially helpful when we look at dimers on a torus ($g=1$); when the torus is large, the associated dimer model (aka the dimer model with periodic boundary conditions) is a good stand-in for the physicist's limit of "infinite size".

Non-bipartite graphs

If G is a planar graph that isn't bipartite, then we need to use Pfaffians instead of determinants; see Kuperberg 1998 and its references.

Relationship to Lindström matrices

The last two methods of counting matchings (Lindström and Kasteleyn) are closely related; indeed, one can "continuously" interpolate between them.

See Kuperberg 1998.

IV. Kuo condensation

Let $G=(V, E)$ be a plane bipartite graph with vertices colored black and white, let F be a face of G (possibly the infinite face), with vertices v, w, x, and y appearing in cyclic order around F, with v and x black and w and y white.

For any set $V^{\prime} \subseteq V$, let $G-V^{\prime}$ denote the induced subgraph of G on the vertex set $V-V^{\prime}$, and let $M_{V^{\prime}}$ denote the number of matchings of this subgraph, so that for instance M_{ϕ} is the number of matchings of G.

Theorem (Kuo 2004):

$$
M_{\phi} M_{\{v, w, x, y\}}=M_{\{v, w\}} M_{\{x, y\}}+M_{\{v, y\}} M_{\{w, x\}}
$$

Aztec diamonds

Let $\mathrm{AD}(n)$ be the Aztec diamond graph of order n, and let G be an $\mathrm{AD}(4)$, with vertices v, w, x, y (black, white, black, white) as shown.

Aztec diamonds

When v, w, x, and y are all removed, the edges around the border are all either forced to be included or forced to be excluded, leaving an $\mathrm{AD}(2)$ in the middle.

y

Aztec diamonds

When v and w (or x and y, or v and y, or w and x) are removed, and forcibly included/excluded edges are removed, what's left is an $\mathrm{AD}(3)$.

Aztec diamonds

Let A_{n} denote the number of matchings of $\mathrm{AD}(n)$.
Kuo's formula, applied to $G=\mathrm{AD}(4)$, yields

$$
A_{4} A_{2}=A_{3} A_{3}+A_{3} A_{3}
$$

More generally, we have $A_{n+1} A_{n-1}=2 A_{n}^{2}$ for all n, which (combined with initial conditions $A_{0}=1$ and $A_{1}=2$) yields $A_{n}=2^{n(n+1) / 2}$.

Hexagons

Let $\operatorname{Hex}(a, b, c)$ be the dual of the hexagon with sides a, b, c, a, b, c, and let G be a $\operatorname{Hex}(3,3,3)$, with vertices v, w, x, y (black, white, black, white) as shown.

Hexagons

When v, w, x, and y are all removed, the edges around the border are all either forced to be included or forced to be excluded, forming a $\operatorname{Hex}(3,2,2)$.

Hexagons

When v and w are removed, what's left is a $\operatorname{Hex}(3,3,2)$.
When x and y are removed, what's left is a $\operatorname{Hex}(3,2,3)$.
When v and y are removed, what's left is a $\operatorname{Hex}(4,2,2)$.
When w and x are removed, what's left is a $\operatorname{Hex}(2,3,3)$.
So Kuo's condensation formula tells us that

$$
H_{3,3,3} H_{3,2,2}=H_{3,3,2} H_{3,2,3}+H_{4,2,2} H_{2,3,3}
$$

where $H_{a, b, c}$ denote the number of matchings of $\operatorname{Hex}(a, b, c)$.
More generally,

$$
H_{a, b, c} H_{a, b-1, c-1}=H_{a, b, c-1} H_{a, b-1, c}+H_{a+1, b-1, c-1} H_{a-1, b, c} ;
$$

this identity (combined with suitable initial conditions) yields Macdonald's formula for $H_{a, b, c}$ by induction on $a+b+c$.

Idea behind proof of Kuo's formula

Suppose we have a matching of G (black) superimposed with a matching of $G-\{v, w, x, y\}$ (red). Suppose there are black-red- \cdots-black paths joining v to w and x to y.

Idea behind proof of Kuo's formula

Swapping red with black along the path joining v to w, we get a matching of $G-\{v, w\}$ (black) superimposed with a matching of $G-\{x, y\}$ (red).

Idea behind proof of Kuo's formula

On the other hand, suppose there are black-red-. . . -black paths joining v to y and w to x. (Note that there can't be paths joining v to x and w to y for topological reasons.)

Idea behind proof of Kuo's formula

Swapping red with black along the path joining v to y, we get a matching of $G-\{v, y\}$ (black) superimposed with a matching of $G-\{w, x\}$ (red).

Variations

The four vertices could be black, black, white, white or even 3 of one color and 1 of the other color.

The graph need not be bipartite.
See Yan et al. 2005.

Exercise 4

Use Kuo condensation to count matchings of the two fortress graphs.

References with links

R. Kenyon, J. Propp, and D. Wilson, Trees and matchings, Electronic Journal of Combinatorics 7 R25 (2000)
R. Kenyon and S. Sheffield, Dimers, tilings, and trees, Journal of Combinatorial Theory, Series B 92, 295-317 (2004)
E. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science 319, 29-57 (2004)
G. Kuperberg, An exploration of the permanent-determinant method (1998)
J. Propp, Dimers and dominoes (2014)
W. Yan, Y. Yeh, and F. Zhang, Graphical condensation of plane graphs: A combinatorial approach, Theoretical Computer Science 349, 452-461 (2005)
... and these slides and homework 2.

