Combinatorics and Exact Enumeration in Dimer Models

Lecture #2

James Propp, UMass Lowell

ITS Summer School on Dimers August 16, 2023

Slides for this talk and the group work assignment are at http://faculty.uml.edu/jpropp/its2.pdf and http://faculty.uml.edu/jpropp/its-P2.pdf

I. Temperley's bijection

Temperley's bijection

Temperley's bijection

Temperley's bijection

Matrix-tree theorem: Given a simple graph G with vertices v_1, \ldots, v_n , let A_{ij} $(1 \le i, j \le n)$ be -1 if v_i and v_j are adjacent and let A_{ij} be deg i if i = j (and 0 otherwise).

Then for all $1 \le i \le n$, the (n-1)-by-(n-1) matrix obtained from A by crossing out the *i*th row and *i*th column of A has determinant equal to the number of spanning trees of G.

Counting spanning trees

For instance, to count the domino tilings of a 3-by-3 square with a corner removed, use Temperley's bijection to replace them by counting spanning trees of a 2-by-2 grid graph, and then evaluate a 3-by-3 subdeterminant of the associated 4-by-4 matrix.

Dimer covers and spanning trees

For generalizations of Temperley's bijection, see Kenyon et al. (2000) and Kenyon-Sheffield (2004).

II. Lindström's Lemma

Given an acyclic finite directed graph G with n source nodes s_1, \ldots, s_n and n terminal nodes t_1, \ldots, t_n , let $A_{i,j}$ $(1 \le i, j \le n)$ be the number of paths from s_i to t_j .

Suppose that the only way to have *n* nonintersecting paths joining the initial nodes to the terminal nodes is to join s_i to t_i for $1 \le i \le n$.

Then the determinant of A (aka the Gessel-Viennot matrix) is the number of families of n pairwise-nonintersecting lattice paths from the source nodes to the terminal nodes.

Special case n = 2: the number of pairs of nonintersecting paths joining s_1 to t_1 and s_2 to t_2 equals $A_{1,1}A_{2,2} - A_{1,2}A_{2,1}$.

Proof-idea: Use path-switching to show that the number of pairs of **intersecting** paths joining s_1 to t_1 and s_2 to t_2 equals $A_{1,2}A_{2,1}$.

Application of Lindström's Lemma: The number of lozenge tilings of the hexagon of side 3 is

Hence the number of domino tilings of the 4-by-4 square is

$$\left|\begin{array}{rrr} 12 & 6 \\ 6 & 6 \end{array}\right| = 36$$

A way to unify these two constructions is to imagine we are superimposing two dimer configurations, one fixed (though not quite a dimer cover) and one varying. The fixed near-cover will omit some vertices and include some extra vertices outside the graph under consideration.

The fixed near-matching should be "extremal" in the sense that if you take its symmetric difference with any (perfect) matching of the graph, you'll get a union of paths and doubled edges (no cycles of length > 2).

•	ο	•	ο	•	0
0	•	0	٠	ο	•
•	ο	•	ο	•	0
0	•	0	•	о	٠
•	ο	•	ο	•	ο
0	•	o	٠	0	•

The directed double-dimer perspective Apply Lindström's Lemma to lozenge tilings of this region:

The directed double-dimer perspective Orient a fixed extremal near-cover from black to white:

The directed double-dimer perspective Orient the varying cover from white to black:

The directed double-dimer perspective Shrink away the black vertices:

The directed double-dimer perspective

The number of tilings is

$$\left| \begin{array}{cccc} 14 & 5 & 0 \\ 5 & 6 & 1 \\ 0 & 1 & 2 \end{array} \right| = 104$$

Use Lindström's lemma to count matchings of the two fortress graphs we've looked at. Here's one of them:

Orient a fixed extremal near-cover from black to white:

Orient the varying cover from white to black:

Shrink away the black vertices:

III. Permanents and determinants

The number of perfect matchings of a bipartite planar graph G with 2n vertices (n black, n white) is equal to the permanent of the n-by-n bipartite adjacency matrix A whose i, jth entry is 1 or 0 according to whether the ith black vertex is adjacent to the jth white vertex.

This seems useless, since permanents (unlike determinants) are hard to compute.

But Kasteleyn showed if G is planar, then one can tamper with the signs of the nonzero elements of A (or, more generally, replace them by complex numbers of norm 1) in such a way that in the resulting matrix K, all nonzero contributions to the determinant interfere constructively, so that $|\det K|$ is the number of matchings.

Sometimes you can just take K = A (e.g., if G is a 6-cycle, or more generally a 4k + 2-cycle):

But usually you need to make changes (e.g., if G is a 4-cycle, or more generally a 4k-cycle):

But usually you need to make changes (e.g., if G is a 4-cycle, or more generally a 4k-cycle):

Kasteleyn proved that if G is a bipartite plane graph, there is always a way to assign signs to its edges so that the product of the signs around a face is +1 or -1 according to whether the number of edges around the face is 2 (mod 4) or 0 (mod 4).

This gives a matrix whose determinant has magnitude equal to the number of perfect matchings of G.

(Kasteleyn used 2n-by-2n matrices; Percus noticed that n-by-n matrices could be used instead.)

You can also use complex numbers as weights, as long (reading around each face-cycle of edges) the product of the weights of the 1st, 3rd, 5th, \ldots edges is either equal to, or the negative of, the product of the weights of the 2nd, 4th, 6th, \ldots edges, according to whether the number of edges around the face is 2 (mod 4) or 0 (mod 4).

For instance, in a square grid graph, we could put weight 1 on all horizontal edges and weight *i* on all vertical edges.

Kasteleyn showed that for m, n even, the number of domino tilings of an m-by-n board is

$$\prod_{j=1}^{m/2} \prod_{k=1}^{n/2} \left(4\cos^2 \frac{\pi j}{m+1} + 4\cos^2 \frac{\pi k}{n+1} \right),$$

the product of the eigenvalues of K.

For my version of his proof, see Propp 2014.

The inverse Kasteleyn matrix

The entries of K^{-1} are important in statistical mechanics. Specifically, if the *i*th black vertex is adjacent to the *j*th white vertex, then (the magnitude of) the *i*, *j* entry of K^{-1} equals the probability that a random matching of the graph matches the *i*th black vertex to the *j*th white vertex.

This is an easy consequence of the cofactor formula for the inverse of a matrix.

The rate at which these correlations decay is hugely important for understanding random dimer covers.

If G can be embedded on a surface of genus g, then we can write the number of matchings of G as a sum of 4^g determinants.

This is especially helpful when we look at dimers on a torus (g = 1); when the torus is large, the associated dimer model (aka the dimer model with periodic boundary conditions) is a good stand-in for the physicist's limit of "infinite size".

Non-bipartite graphs

If G is a planar graph that isn't bipartite, then we need to use Pfaffians instead of determinants; see Kuperberg 1998 and its references.

Relationship to Lindström matrices

The last two methods of counting matchings (Lindström and Kasteleyn) are closely related; indeed, one can "continuously" interpolate between them.

See Kuperberg 1998.

IV. Kuo condensation

Let G = (V, E) be a plane bipartite graph with vertices colored black and white, let F be a face of G (possibly the infinite face), with vertices v, w, x, and y appearing in cyclic order around F, with v and x black and w and y white.

For any set $V' \subseteq V$, let G - V' denote the induced subgraph of G on the vertex set V - V', and let $M_{V'}$ denote the number of matchings of this subgraph, so that for instance M_{ϕ} is the number of matchings of G.

Theorem (Kuo 2004):

$$M_{\phi}M_{\{v,w,x,y\}} = M_{\{v,w\}}M_{\{x,y\}} + M_{\{v,y\}}M_{\{w,x\}}$$

Aztec diamonds

Let AD(n) be the Aztec diamond graph of order *n*, and let *G* be an AD(4), with vertices *v*, *w*, *x*, *y* (black, white, black, white) as shown.

Aztec diamonds

When v, w, x, and y are all removed, the edges around the border are all either forced to be included or forced to be excluded, leaving an AD(2) in the middle.

Aztec diamonds

When v and w (or x and y, or v and y, or w and x) are removed, and forcibly included/excluded edges are removed, what's left is an AD(3).

Let A_n denote the number of matchings of AD(n).

Kuo's formula, applied to G = AD(4), yields

$$A_4A_2 = A_3A_3 + A_3A_3$$

More generally, we have $A_{n+1}A_{n-1} = 2A_n^2$ for all n, which (combined with initial conditions $A_0 = 1$ and $A_1 = 2$) yields $A_n = 2^{n(n+1)/2}$.

Hexagons

Let Hex(a, b, c) be the dual of the hexagon with sides a, b, c, a, b, c, and let G be a Hex(3, 3, 3), with vertices v, w, x, y (black, white, black, white) as shown.

Hexagons

When v, w, x, and y are all removed, the edges around the border are all either forced to be included or forced to be excluded, forming a Hex(3, 2, 2).

Hexagons

When v and w are removed, what's left is a Hex(3,3,2). When x and y are removed, what's left is a Hex(3,2,3). When v and y are removed, what's left is a Hex(4,2,2). When w and x are removed, what's left is a Hex(2,3,3). So Kuo's condensation formula tells us that

$$H_{3,3,3}H_{3,2,2} = H_{3,3,2}H_{3,2,3} + H_{4,2,2}H_{2,3,3}$$

where $H_{a,b,c}$ denote the number of matchings of Hex(a, b, c). More generally,

$$H_{a,b,c}H_{a,b-1,c-1} = H_{a,b,c-1}H_{a,b-1,c} + H_{a+1,b-1,c-1}H_{a-1,b,c}$$
;

this identity (combined with suitable initial conditions) yields Macdonald's formula for $H_{a,b,c}$ by induction on a + b + c.

Suppose we have a matching of G (black) superimposed with a matching of $G - \{v, w, x, y\}$ (red). Suppose there are black-red- \cdots -black paths joining v to w and x to y.

Swapping red with black along the path joining v to w, we get a matching of $G - \{v, w\}$ (black) superimposed with a matching of $G - \{x, y\}$ (red).

On the other hand, suppose there are black-red- \cdots -black paths joining v to y and w to x. (Note that there can't be paths joining v to x and w to y for topological reasons.)

Swapping red with black along the path joining v to y, we get a matching of $G - \{v, y\}$ (black) superimposed with a matching of $G - \{w, x\}$ (red).

Variations

The four vertices could be black, black, white, white or even 3 of one color and 1 of the other color.

The graph need not be bipartite.

See Yan et al. 2005.

Use Kuo condensation to count matchings of the two fortress graphs.

References with links

R. Kenyon, J. Propp, and D. Wilson, Trees and matchings, Electronic Journal of Combinatorics **7** R25 (2000)

R. Kenyon and S. Sheffield, Dimers, tilings, and trees, Journal of Combinatorial Theory, Series B **92**, 295–317 (2004)

E. Kuo, Applications of graphical condensation for enumerating matchings and tilings, Theoretical Computer Science **319**, 29–57 (2004)

G. Kuperberg, An exploration of the permanent-determinant method (1998)

J. Propp, Dimers and dominoes (2014)

W. Yan, Y. Yeh, and F. Zhang, Graphical condensation of plane graphs: A combinatorial approach, Theoretical Computer Science **349**, 452–461 (2005)

... and these slides and homework 2.