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|. Temperley's bijection

There is a bijection between domino tilings of the
(2m — 1)-by-(2n — 1) rectangle with a corner removed and
spanning trees of the m-by-n grid graph.
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Counting spanning trees

Matrix-tree theorem: Given a simple graph G with vertices
Vi, ...,V let A; (1 <i,j<n)be—1ifv; and v; are adjacent
and let A; be degi if i = j (and O otherwise).

Then for all 1 </ < n, the (n — 1)-by-(n — 1) matrix obtained
from A by crossing out the ith row and ith column of A has
determinant equal to the number of spanning trees of G.
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Counting spanning trees

For instance, to count the domino tilings of a 3-by-3 square
with a corner removed, use Temperley's bijection to replace
them by counting spanning trees of a 2-by-2 grid graph, and
then evaluate a 3-by-3 subdeterminant of the associated
4-by-4 matrix.

2 -1 0
~1 2 -1|=4
0 -1 2
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Dimer covers and spanning trees

For generalizations of Temperley's bijection, see Kenyon et al.
(2000) and Kenyon-Sheffield (2004).
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Il. Lindstrom's Lemma
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Lindstrom's Lemma

Given an acyclic finite directed graph G with n source nodes
S1,...,S, and n terminal nodes ty,. .., t,, let A;;
(1 <i,j < n) be the number of paths from s; to t;.

Suppose that the only way to have n nonintersecting paths
joining the initial nodes to the terminal nodes is to join s; to t;
for1 <i<n.

Then the determinant of A (aka the Gessel-Viennot matrix) is
the number of families of n pairwise-nonintersecting lattice
paths from the source nodes to the terminal nodes.
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Lindstrom’s Lemma
Special case n = 2: the number of pairs of nonintersecting
paths joining s; to t; and s, to t, equals A 1Az — A12A21.

Proof-idea: Use path-switching to show that the number of

pairs of intersecting paths joining s; to t; and s, to t, equals
A12A21.
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Lindstrom's Lemma

Application of Lindstrom’s Lemma: The number of lozenge
tilings of the hexagon of side 3 is

G 6 O
() G () |=980
5 G 6
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Domino tilings and Randall paths
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Domino tilings and Randall paths
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Domino tilings and Randall paths

17/ 64



Domino tilings and Randall paths
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Domino tilings and Randall paths
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Domino tilings and Randall paths

Hence the number of domino tilings of the 4-by-4 square is
12 6
6

6 ‘:36
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The double-dimer perspective

A way to unify these two constructions is to imagine we are
superimposing two dimer configurations, one fixed (though not
quite a dimer cover) and one varying. The fixed near-cover will
omit some vertices and include some extra vertices outside the
graph under consideration.

The fixed near-matching should be “extremal” in the sense
that if you take its symmetric difference with any (perfect)
matching of the graph, you'll get a union of paths and doubled
edges (no cycles of length > 2).
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The double-dimer perspective
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The double-dimer perspective
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The double-dimer perspective
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The double-dimer perspective
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The directed double-dimer perspective
Apply Lindstrom’s Lemma to lozenge tilings of this region:
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The directed double-dimer perspective
Orient a fixed extremal near-cover from black to white:




The directed double-dimer perspective
Orient the varying cover from white to black:
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The directed double-dimer perspective
Shrink away the black vertices:
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The directed double-dimer perspective

The number of tilings is
14 5 0
5 6 1|=104
0 1 2
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Exercise 3

Use Lindstrém'’s lemma to count matchings of the two fortress
graphs we've looked at. Here's one of them:
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Exercise 3

Orient a fixed extremal near-cover from black to white:
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Exercise 3
Orient the varying cover from white to black:
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Exercise 3

Shrink away the black vertices:
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I1|. Permanents and determinants

The number of perfect matchings of a bipartite planar graph
G with 2n vertices (n black, n white) is equal to the
permanent of the n-by-n bipartite adjacency matrix A whose
i,jth entry is 1 or 0 according to whether the ith black vertex
is adjacent to the jth white vertex.

This seems useless, since permanents (unlike determinants) are
hard to compute.

But Kasteleyn showed if G is planar, then one can tamper
with the signs of the nonzero elements of A (or, more
generally, replace them by complex numbers of norm 1) in
such a way that in the resulting matrix K, all nonzero
contributions to the determinant interfere constructively, so
that | det K| is the number of matchings.
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Determinants and matchings

Sometimes you can just take K = A (e.g., if G is a 6-cycle, or
more generally a 4k + 2-cycle):

1 1

O =
=)
—_ O =
Il
N
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Determinants and matchings

But usually you need to make changes (e.g., if G is a 4-cycle,
or more generally a 4k-cycle):

1 1
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1 1
2 2
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Determinants and matchings

Kasteleyn proved that if G is a bipartite plane graph, there is
always a way to assign signs to its edges so that the product of
the signs around a face is +1 or —1 according to whether the
number of edges around the face is 2 (mod 4) or 0 (mod 4).

This gives a matrix whose determinant has magnitude equal to
the number of perfect matchings of G.

(Kasteleyn used 2n-by-2n matrices; Percus noticed that n-by-n
matrices could be used instead.)
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Determinants and matchings

You can also use complex numbers as weights, as long
(reading around each face-cycle of edges) the product of the
weights of the 1st, 3rd, 5th, ...edges is either equal to, or the
negative of, the product of the weights of the 2nd, 4th, 6th,

... edges, according to whether the number of edges around
the face is 2 (mod 4) or 0 (mod 4).

For instance, in a square grid graph, we could put weight 1 on
all horizontal edges and weight i/ on all vertical edges.
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Determinants and matchings

Kasteleyn showed that for m, n even, the number of domino
tilings of an m-by-n board is
Tk
1 )

For my version of his proof, see Propp 2014.

m/2 n/2

HH@m

j=1 k=1

+ 4 cos?

the product of the eigenvalues of K.
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The inverse Kasteleyn matrix

The entries of K~! are important in statistical mechanics.
Specifically, if the ith black vertex is adjacent to the jth white
vertex, then (the magnitude of) the i, entry of K= equals
the probability that a random matching of the graph matches
the ith black vertex to the jth white vertex.

This is an easy consequence of the cofactor formula for the
inverse of a matrix.

The rate at which these correlations decay is hugely important
for understanding random dimer covers.
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Non-planar graphs

If G can be embedded on a surface of genus g, then we can
write the number of matchings of G as a sum of 48
determinants.

This is especially helpful when we look at dimers on a torus
(g = 1); when the torus is large, the associated dimer model
(aka the dimer model with periodic boundary conditions) is a
good stand-in for the physicist’s limit of “infinite size".
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Non-bipartite graphs

If G is a planar graph that isn't bipartite, then we need to use
Pfaffians instead of determinants; see Kuperberg 1998 and its
references.
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Relationship to Lindstrom matrices

The last two methods of counting matchings (Lindstrém and

Kasteleyn) are closely related; indeed, one can “continuously”
interpolate between them.

See Kuperberg 1998.
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I\V. Kuo condensation

Let G = (V, E) be a plane bipartite graph with vertices
colored black and white, let F be a face of G (possibly the
infinite face), with vertices v, w, x, and y appearing in cyclic
order around F, with v and x black and w and y white.

For any set V/ C V, let G — V' denote the induced subgraph
of G on the vertex set V — V/, and let My, denote the
number of matchings of this subgraph, so that for instance M,
is the number of matchings of G.

Theorem (Kuo 2004):

MyMiy w oyt = Myt Mixyy + My yy Miw <
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Aztec diamonds

Let AD(n) be the Aztec diamond graph of order n, and let G
be an AD(4), with vertices v, w, x, y (black, white, black,
white) as shown.

; ]

H+ |
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Aztec diamonds
When v, w, x, and y are all removed, the edges around the

border are all either forced to be included or forced to be
excluded, leaving an AD(2) in the middle.

w
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Aztec diamonds

When v and w (or x and y, or v and y, or w and x) are
removed, and forcibly included/excluded edges are removed,
what's left is an AD(3).
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Aztec diamonds

Let A, denote the number of matchings of AD(n).
Kuo's formula, applied to G = AD(4), yields

AsA; = A3As + AsAs

More generally, we have A, 1A, 1 = 2A2 for all n, which

(combined with initial conditions Ag = 1 and A; = 2) yields
An — 2n(n+1)/2.
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Hexagons

Let Hex(a, b, ¢) be the dual of the hexagon with sides
a,b,c,a,b,c, and let G be a Hex(3,3,3), with vertices
v, w, x,y (black, white, black, white) as shown.
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Hexagons

When v, w, x, and y are all removed, the edges around the
border are all either forced to be included or forced to be
excluded, forming a Hex(3,2,2).
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Hexagons

When v and w are removed, what's left is a Hex(3, 3, 2).
When x and y are removed, what's left is a Hex(3, 2, 3).
When v and y are removed, what's left is a Hex(4, 2, 2).
When w and x are removed, what's left is a Hex(2 3,3).
So Kuo's condensation formula tells us that

H333H320 = H332H303 4+ HapoHo33
where H, . denote the number of matchings of Hex(a, b, ¢).
More generally,
Ha,b,cHa,b—l,c—l = Ha,b,c—lHa,b—l,c + Ha—l—l,b—l,c—lHa—l,b,c ,

this identity (combined with suitable initial conditions) yields
Macdonald's formula for H, p, . by induction on a+ b+ c.
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|dea behind proof of Kuo's formula

Suppose we have a matching of G (black) superimposed with
a matching of G — {v, w, x, y} (red). Suppose there are
black-red-- - - -black paths joining v to w and x to y.

w
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|dea behind proof of Kuo's formula

Swapping red with black along the path joining v to w, we get
a matching of G — {v, w} (black) superimposed with a
matching of G — {x, y} (red).

-
Vﬁ—'= X
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|dea behind proof of Kuo's formula

On the other hand, suppose there are black-red-- - - -black
paths joining v to y and w to x. (Note that there can't be
paths joining v to x and w to y for topological reasons.)

w
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|dea behind proof of Kuo's formula

Swapping red with black along the path joining v to y, we get

a matching of G — {v, y} (black) superimposed with a
matching of G — {w, x} (red).

=
BRSNS

61/64



Variations

The four vertices could be black, black, white, white or even 3
of one color and 1 of the other color.

The graph need not be bipartite.

See Yan et al. 2005.

62/64



Exercise 4

Use Kuo condensation to count matchings of the two fortress
graphs.
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...and these slides and homework 2.
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