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I. Temperley’s bijection

There is a bijection between domino tilings of the
(2m − 1)-by-(2n − 1) rectangle with a corner removed and
spanning trees of the m-by-n grid graph.
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Counting spanning trees

Matrix-tree theorem: Given a simple graph G with vertices
v1, . . . , vn, let Aij (1 ≤ i , j ≤ n) be −1 if vi and vj are adjacent
and let Aij be deg i if i = j (and 0 otherwise).

Then for all 1 ≤ i ≤ n, the (n − 1)-by-(n − 1) matrix obtained
from A by crossing out the ith row and ith column of A has
determinant equal to the number of spanning trees of G .
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Counting spanning trees
For instance, to count the domino tilings of a 3-by-3 square
with a corner removed, use Temperley’s bijection to replace
them by counting spanning trees of a 2-by-2 grid graph, and
then evaluate a 3-by-3 subdeterminant of the associated
4-by-4 matrix.

∣∣∣∣∣∣
2 −1 0
−1 2 −1
0 −1 2

∣∣∣∣∣∣ = 4
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Dimer covers and spanning trees

For generalizations of Temperley’s bijection, see Kenyon et al.
(2000) and Kenyon-Sheffield (2004).
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II. Lindström’s Lemma
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Lindström’s Lemma

Given an acyclic finite directed graph G with n source nodes
s1, . . . , sn and n terminal nodes t1, . . . , tn, let Ai ,j

(1 ≤ i , j ≤ n) be the number of paths from si to tj .

Suppose that the only way to have n nonintersecting paths
joining the initial nodes to the terminal nodes is to join si to ti
for 1 ≤ i ≤ n.

Then the determinant of A (aka the Gessel-Viennot matrix) is
the number of families of n pairwise-nonintersecting lattice
paths from the source nodes to the terminal nodes.
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Lindström’s Lemma
Special case n = 2: the number of pairs of nonintersecting
paths joining s1 to t1 and s2 to t2 equals A1,1A2,2 − A1,2A2,1.

Proof-idea: Use path-switching to show that the number of
pairs of intersecting paths joining s1 to t1 and s2 to t2 equals
A1,2A2,1.
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Lindström’s Lemma
Application of Lindström’s Lemma: The number of lozenge
tilings of the hexagon of side 3 is∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣ = 980
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Domino tilings and Randall paths
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Domino tilings and Randall paths
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Domino tilings and Randall paths
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Domino tilings and Randall paths

Hence the number of domino tilings of the 4-by-4 square is∣∣∣∣ 12 6
6 6

∣∣∣∣ = 36
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The double-dimer perspective

A way to unify these two constructions is to imagine we are
superimposing two dimer configurations, one fixed (though not
quite a dimer cover) and one varying. The fixed near-cover will
omit some vertices and include some extra vertices outside the
graph under consideration.

The fixed near-matching should be “extremal” in the sense
that if you take its symmetric difference with any (perfect)
matching of the graph, you’ll get a union of paths and doubled
edges (no cycles of length > 2).
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The double-dimer perspective

27 / 64



The double-dimer perspective
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The double-dimer perspective
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The directed double-dimer perspective
Apply Lindström’s Lemma to lozenge tilings of this region:
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The directed double-dimer perspective
Orient a fixed extremal near-cover from black to white:
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The directed double-dimer perspective
Orient the varying cover from white to black:
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The directed double-dimer perspective
Shrink away the black vertices:
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The directed double-dimer perspective

The number of tilings is∣∣∣∣∣∣∣∣∣
14 5 0

5 6 1

0 1 2

∣∣∣∣∣∣∣∣∣ = 104
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Exercise 3
Use Lindström’s lemma to count matchings of the two fortress
graphs we’ve looked at. Here’s one of them:
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Orient a fixed extremal near-cover from black to white:

36 / 64



Exercise 3
Orient the varying cover from white to black:
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Exercise 3
Shrink away the black vertices:
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III. Permanents and determinants
The number of perfect matchings of a bipartite planar graph
G with 2n vertices (n black, n white) is equal to the
permanent of the n-by-n bipartite adjacency matrix A whose
i , jth entry is 1 or 0 according to whether the ith black vertex
is adjacent to the jth white vertex.

This seems useless, since permanents (unlike determinants) are
hard to compute.

But Kasteleyn showed if G is planar, then one can tamper
with the signs of the nonzero elements of A (or, more
generally, replace them by complex numbers of norm 1) in
such a way that in the resulting matrix K , all nonzero
contributions to the determinant interfere constructively, so
that | detK | is the number of matchings.
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Determinants and matchings
Sometimes you can just take K = A (e.g., if G is a 6-cycle, or
more generally a 4k + 2-cycle):

∣∣∣∣∣∣
1 0 1
1 1 0
0 1 1

∣∣∣∣∣∣ = 2
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Determinants and matchings
But usually you need to make changes (e.g., if G is a 4-cycle,
or more generally a 4k-cycle):

∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0
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∣∣∣∣ 1 1
−1 1

∣∣∣∣ = 2
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Determinants and matchings

Kasteleyn proved that if G is a bipartite plane graph, there is
always a way to assign signs to its edges so that the product of
the signs around a face is +1 or −1 according to whether the
number of edges around the face is 2 (mod 4) or 0 (mod 4).

This gives a matrix whose determinant has magnitude equal to
the number of perfect matchings of G .

(Kasteleyn used 2n-by-2n matrices; Percus noticed that n-by-n
matrices could be used instead.)
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Determinants and matchings

You can also use complex numbers as weights, as long
(reading around each face-cycle of edges) the product of the
weights of the 1st, 3rd, 5th, . . . edges is either equal to, or the
negative of, the product of the weights of the 2nd, 4th, 6th,
. . . edges, according to whether the number of edges around
the face is 2 (mod 4) or 0 (mod 4).

For instance, in a square grid graph, we could put weight 1 on
all horizontal edges and weight i on all vertical edges.
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Determinants and matchings

Kasteleyn showed that for m, n even, the number of domino
tilings of an m-by-n board is

m/2∏
j=1

n/2∏
k=1

(
4 cos2

πj

m + 1
+ 4 cos2

πk

n + 1

)
,

the product of the eigenvalues of K .

For my version of his proof, see Propp 2014.
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The inverse Kasteleyn matrix

The entries of K−1 are important in statistical mechanics.
Specifically, if the ith black vertex is adjacent to the jth white
vertex, then (the magnitude of) the i , j entry of K−1 equals
the probability that a random matching of the graph matches
the ith black vertex to the jth white vertex.

This is an easy consequence of the cofactor formula for the
inverse of a matrix.

The rate at which these correlations decay is hugely important
for understanding random dimer covers.
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Non-planar graphs

If G can be embedded on a surface of genus g , then we can
write the number of matchings of G as a sum of 4g

determinants.

This is especially helpful when we look at dimers on a torus
(g = 1); when the torus is large, the associated dimer model
(aka the dimer model with periodic boundary conditions) is a
good stand-in for the physicist’s limit of “infinite size”.
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Non-bipartite graphs

If G is a planar graph that isn’t bipartite, then we need to use
Pfaffians instead of determinants; see Kuperberg 1998 and its
references.
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Relationship to Lindström matrices

The last two methods of counting matchings (Lindström and
Kasteleyn) are closely related; indeed, one can “continuously”
interpolate between them.

See Kuperberg 1998.
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IV. Kuo condensation

Let G = (V ,E ) be a plane bipartite graph with vertices
colored black and white, let F be a face of G (possibly the
infinite face), with vertices v , w , x , and y appearing in cyclic
order around F , with v and x black and w and y white.

For any set V ′ ⊆ V , let G − V ′ denote the induced subgraph
of G on the vertex set V − V ′, and let MV ′ denote the
number of matchings of this subgraph, so that for instance Mφ

is the number of matchings of G .

Theorem (Kuo 2004):

MφM{v ,w ,x ,y} = M{v ,w}M{x ,y} +M{v ,y}M{w ,x}
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Aztec diamonds
Let AD(n) be the Aztec diamond graph of order n, and let G
be an AD(4), with vertices v ,w , x , y (black, white, black,
white) as shown.
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Aztec diamonds
When v , w , x , and y are all removed, the edges around the
border are all either forced to be included or forced to be
excluded, leaving an AD(2) in the middle.
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Aztec diamonds
When v and w (or x and y , or v and y , or w and x) are
removed, and forcibly included/excluded edges are removed,
what’s left is an AD(3).
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Aztec diamonds

Let An denote the number of matchings of AD(n).

Kuo’s formula, applied to G = AD(4), yields

A4A2 = A3A3 + A3A3

More generally, we have An+1An−1 = 2A2
n for all n, which

(combined with initial conditions A0 = 1 and A1 = 2) yields
An = 2n(n+1)/2.
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Hexagons
Let Hex(a, b, c) be the dual of the hexagon with sides
a, b, c , a, b, c , and let G be a Hex(3, 3, 3), with vertices
v ,w , x , y (black, white, black, white) as shown.
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Hexagons
When v , w , x , and y are all removed, the edges around the
border are all either forced to be included or forced to be
excluded, forming a Hex(3, 2, 2).
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Hexagons
When v and w are removed, what’s left is a Hex(3, 3, 2).
When x and y are removed, what’s left is a Hex(3, 2, 3).
When v and y are removed, what’s left is a Hex(4, 2, 2).
When w and x are removed, what’s left is a Hex(2, 3, 3).
So Kuo’s condensation formula tells us that

H3,3,3H3,2,2 = H3,3,2H3,2,3 + H4,2,2H2,3,3

where Ha,b,c denote the number of matchings of Hex(a, b, c).

More generally,

Ha,b,cHa,b−1,c−1 = Ha,b,c−1Ha,b−1,c + Ha+1,b−1,c−1Ha−1,b,c ;

this identity (combined with suitable initial conditions) yields
Macdonald’s formula for Ha,b,c by induction on a + b + c .
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Idea behind proof of Kuo’s formula
Suppose we have a matching of G (black) superimposed with
a matching of G − {v ,w , x , y} (red). Suppose there are
black-red-· · · -black paths joining v to w and x to y .
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Idea behind proof of Kuo’s formula
Swapping red with black along the path joining v to w , we get
a matching of G − {v ,w} (black) superimposed with a
matching of G − {x , y} (red).
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Idea behind proof of Kuo’s formula
On the other hand, suppose there are black-red-· · · -black
paths joining v to y and w to x . (Note that there can’t be
paths joining v to x and w to y for topological reasons.)
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Idea behind proof of Kuo’s formula
Swapping red with black along the path joining v to y , we get
a matching of G − {v , y} (black) superimposed with a
matching of G − {w , x} (red).
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Variations

The four vertices could be black, black, white, white or even 3
of one color and 1 of the other color.

The graph need not be bipartite.

See Yan et al. 2005.
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Exercise 4

Use Kuo condensation to count matchings of the two fortress
graphs.
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