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All slides are now available
Notes:

http://faculty.uml.edu/jpropp/its1.pdf

http://faculty.uml.edu/jpropp/its2.pdf

http://faculty.uml.edu/jpropp/its3.pdf

Problems and solutions for assignment #1:

http://faculty.uml.edu/jpropp/its-P1.pdf

http://faculty.uml.edu/jpropp/its-S1.pdf

Problems and solutions for assignment #2:

http://faculty.uml.edu/jpropp/its-P2.pdf

http://faculty.uml.edu/jpropp/its-S2.pdf
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Height functions

Suppose G is a bipartite plane graph, each of whose edges
belongs to at least one matching of G (but doesn’t belong to
all matchings of G ).

Then we can represent each matching M by a real-valued
function H = HM on the faces of G , called a height function,
which is uniquely defined (modulo the value it takes on the
unbounded face) and from which the matching can be
reconstructed.

There are actually many ways to do this, all essentially
equivalent; I’ll give a uniform definition for all graphs G ,
though for specific graphs G one might want to tweak it (e.g.,
scaling H up by a constant to make it integer-valued).
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Height functions
Let µ0 be a positive fractional matching of G ; that is, a
positive function on the edge-set of G with the property that
for every vertex v ,

∑
e µ(e) = 1 where e is summed over all

edges containing v .

(E.g., µ0(e) could be the proportion of matchings of G that
contain e.)

Let F1 and F2 be adjacent faces sharing an edge e; say the
endpoints of e are the black vertex v and the white vertex w .

Then we take

HM(F2)− HM(F1) =

{
µ0(e) if e 6∈ M ,

µ0(e)− 1 if e ∈ M
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Height functions

When the edge e is NOT in the matching M :
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Height functions

When the edge e IS in the matching M :
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Height functions

Local consistency: If we hold the black vertex v fixed and take
the neighbors of v in counterclockwise order (w1,w2, . . . ,wn)
so that the edges e1, e2, . . . pivot counterclockwise around v ,
the heights of the successive faces F1,F2, . . . increase by µ0(e)
except when e ∈ M , in which case they increase by µ0(e)− 1
(i.e., they decrease by 1− µ0(e)). The total height increase as
e makes one turn around v is(∑

e

µ0(e)

)
− 1 = 1− 1 = 0

where e is summed over all edges containing v .
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Height functions

Local consistency implies global consistency.

We also have uniqueness, since every face can be reached from
the unbounded face by a succession of such pivots.
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Height differences and flows
Orient M1 from black to white and M2 from white to black
and remove all 2-cycles (doubled edges), obtaining a flow.

Then the difference between the height of face F under M1

and the height of face F under M2 is essentially the winding
number of the flow around F .
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Tilings and matchings
In tilings, the height function lives on the set of vertices.

In matchings, the height function lives on the set of faces.
Sometimes it’s handy to have several unbounded faces, with
different (fixed) heights.
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Face twists

Using the height function, we can endow the set of matchings
with the structure of a distributive lattice whose covering
relations correspond to “face twists”.

All matchings can be reached from one another by face twists.
See James Propp 2002, Lattice structure for orientations of
graphs (https://arxiv.org/abs/math/0209005).
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Face twists and Kasteleyn
This twist-move picture sheds light on Kasteleyn’s theorem, in
particular, the role played by the product of the weights of the
1st, 3rd, 5th, . . . edges around a face divided by the product of
the weights of the 2nd, 4th, 6th, . . . edges around the face
(call this (*)).

The determinant of a matrix Ai ,j is a sum of terms of the form

sign(π) A1,π(1)A2,π(2) · · ·An,π(n)

When you twist around a face with 2k sides, you compose π
with a k-cycle, which multiplies the sign by (−1)k+1.

You also multiply A1,π(1) · · ·An,π(n) by (*), so if Kasteleyn’s
condition is satisfied, the two multiplications cancel each other,
and the terms of the determinant interfere constructively.
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Matchings of the plane
In finite graphs, all dimer states are related by face moves. In
infinite graphs, things are very different.

E.g., in the infinite hexagon graph, there are matchings that
are rigid (no face moves are possible).
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Matchings of the plane
There are three rigid matchings that are invariant under all the
translation-symmetries of the graph.

20 / 64



Matchings of the plane
Likewise, there are four rigid matchings of the square grid that
are invariant under all color-preserving translation-symmetries
of the graph.
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Matchings of the plane

Such matchings, restricted to finite patches, are extremal in
the sense required in Lecture #2.

That is because there is a direction in which the height is
increasing as rapidly as it can.

Every face lies on an infinite path of faces along which the
height is monotone increasing.

Frozen regions in random tilings of large finite regions tend to
exhibit local behavior given by such extremal matchings of the
infinite graph.
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Tilings in the plane

In the dual picture, an extremal tiling has the property that
every vertex lies on an infinite path of vertices along which the
height is monotone: the faces adjoining the path are black on
one side and white on the other.
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Matchings of the plane

Let’s look again at fortress graphs, this time in the dual
picture (“diabolo tilings”).
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Let’s look again at fortress graphs, this time in the dual
picture (“diabolo tilings”).

26 / 64



Types of boundary conditions

27 / 64



How to find tractable dimer-enumeration problems

(1) Use toroidal boundary conditions (or conditions on the
boundary of a rectangle with the height function changing as
little as possible) and apply Kasteleyn’s methods.

OR:

(2) Use domain-wall boundary conditions with the height
function changing as drastically as possible and apply the
other methods from the first two lectures.
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Example: Aztec dungeon
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The Aztec dungeon
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The Aztec dungeon
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The Aztec dungeon
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The Aztec dungeon

Ciucu (2002): The number of matchings of the Aztec dungeon
graph is always a power of 13 or twice a power of 13.

Compare with Yang’s unpublished 1991 result: The number of
matchings of the fortess graph is always a power of 5 or twice
a power of 5.
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What’s new?

Most of what I’ve talked about so far is several decades old.

If I were teaching a full-semester course for students
contemplating research in combinatorics, I’d want to cover
more recent developments.

Here are some articles I’d read to prepare myself to teach such
a course (in addition to learning more about statistical
mechanics and cluster algebras and integrable systems).

There are many more I’d want to read; this is just a sample!
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1994

John Stembridge, Some hidden relations involving the ten
symmetry classes of plane partitions

Symmetrical plane partitions correspond to symmetrical
lozenge-tilings of hexagons.

Stembridge noticed (and proved) that in many cases, the
number of tilings with a 2-fold symmetry equals the evaluation
at q = −1 of the q-enumeration of the tilings, where a plane
partition consisting of n cubes is assigned weight qn.

This “q = −1 phenomenon” led the way to the discovery of
the Cyclic Sieving Phenomenon by Reiner, Stanton, and White
in 2004.
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2000

Henry Cohn, 2-adic behavior of numbers of domino tilings

The number of domino tilings of a 2n-by-2n square was known
to be of the form 2nf (n)2; Cohn used Kasteleyn’s formula to
show that f (n) is 2-adically continuous.

Similar results are known conjecturally, e.g., for domino tilings
of the 2n-by-4n rectangle, and even domino tilings of the
L-shaped region obtained from removing a 4n-by-4n square
from the corner of an 8n-by-8n square.

Kasteleyn’s method is unlikely to yield a proof for the L-shaped
region; a different sort of explanation is probably required.
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2001

Greg Kuperberg, Kasteleyn cokernels

The cokernel of the Kasteleyn matrix K of a graph G is an
abelian group whose order is the number of matchings of the
graph; it depends only on G (not on one’s choice of K ).

It is analogous to the critical group of a graph (the cokernel of
the Laplacian), and indeed there are cases where the two
notions coincide.

There are many fundamental open questions about the
Kasteleyn cokernel.
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2002

Rick Kenyon, The Laplacian and ∂ operators on critical planar
graphs

Kasteleyn’s method of choosing edge-weights is global.

(Complex) Kasteleyn weights of the edges of a graph can be
derived locally from an embedding of the graph in the complex
plane provided that the embedding is “isoradial”; that is,
vertices belonging to a face are concyclic, with all circles
having the same radius.

Using isoradial embeddings opens the door to applying
continuous and discrete analytic function theory to the study
of the asymptotics of the dimer model.
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2004

David Speyer, Perfect matchings and the octahedron
recurrence

A common framework underlying much study of the dimer
model is the octahedron recurrence

f (i , j ; k + 1)f (i , j ; k − 1) =

f (i − 1, j ; k)f (i + 1, j ; k)+

f (i , j − 1; k)f (i , j + 1; k)

describing a function on Z3.

You’ve seen this with generalized shuffling and Kuo
condensation.
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2004

Speyer and others figured out how to reverse engineer dimer
models from integer sequences satisfying one-dimensional
octahedron recurrences, notably the Somos-4 sequence
1,1,1,1,2,3,7,23,59,314,. . . satisfying

SnSn−4 = Sn−1Sn−3 + Sn−2Sn−2
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2007

Benjamin Young, Computing a pyramid partition generating
function with dimer shuffling

MacMahon’s generating function

1
(1− q1)1(1− q2)2(1− q3)3 · · ·

for unconstrained plane partitions can be seen as the partition
function (in the stat mech sense) of a dimer model in the
infinite hexagon lattice constrained “near infinity”:
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2007
Kenyon and Szendroi had looked at the square-lattice version
of this:
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2007

Young proved a conjecture of Kenyon and Szendroi: if we
weight finite “fillings” of the “square-lattice empty room” in
the natural way (giving a dimer configuration weight qn if it
can be obtained from the the initial configuration using n face
twists but no fewer) then the sum of the weights of all such
configurations is

(1+ q)1(1+ q3)3(1+ q5)5 · · ·
(1− q2)2(1− q4)4(1− q6)6 · · ·

There are probably more such formulas awaiting discovery.
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2008

Alexei Borodin and Vadim Gorin, Shuffling algorithm for boxed
plane partitions

How often do you run into commuting stochastic matrices
giving rise to two commuting dimensions of time evolution?!
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2011

Eric Nordenstam and Benjamin Young, Domino shuffling on
Novak half-hexagons and Aztec half-diamonds
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2014

Forest Tong, Generalizing the divisibility property of rectangle
domino tilings

I had noticed years earlier (generalizing a fairly well-known
property of the Hemachandra-Fibonacci numbers) that if
R(m, n) denotes the number of domino tilings of the m-by-n
rectangle, then R(m, n) divides R(m′, n′) whenever m + 1
divides m′ + 1 and n + 1 divides n′ + 1.

Tong gave a combinatorial proof.
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2015

Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie
Corteel, and Sanjay Ramassamy, Dimers on Rail Yard Graphs

The authors presented a new framework that unified many
earlier results and simplified proofs of old results while making
new ones possible.
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2018
Tri Lai and Gregg Musiker, Dungeons and Dragons:
Combinatorics for the dP3 Quiver

“In this paper, we utilize the machinery of cluster algebras,
quiver mutations, and brane tilings to study a variety of
historical enumerative combinatorics questions all under one
roof.”
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2019

Grant Barkley and Ricky Liu, Channels, Billiards, and Perfect
Matching 2-Divisibility

“We also establish a surprising connection between
2-divisibility of mG and dynamical systems by showing an
equivalency between channels and billiard paths.”
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2021
Mihai Ciucu, Cruciform regions and a conjecture of Di
Francesco

Among other things, Ciucu shows that the number of domino
tilings of “elbow” regions like

is given by the formula

2n(n+1)/2n!
H(2n + 1)H(a)H(b)

H(n + a + 1)H(n + b + 1)

where H(n) = 0!1!2! · · · (n − 1)!.

(The picture shows the case n = 7, a = 3, b = 4.)
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2023

Tomas Berggren and Alexei Borodin, Geometry of the doubly
periodic Aztec dimer model
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2023
Nishant Chandgotia, Scott Sheffield, Catherine Wolfram,
Large deviations for the 3D dimer model

Bypassing exact combinatorial methods entirely, the authors
made inroads on the hitherto untouchable topic of
three-dimensional dimer models.
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Quantum dimer model

I know nothing about this, but Roderich Moessner writes:

“Quantum dimer models have been influential in the quest for
topological/fractionalised magnetic phases. One of the central
ingredients here has been the observation that one can
’Rokhsar-Kivelsonize’ classical dimer models, so that their
correlations are those of a quantum model with a particular
combination of diagonal and off-diagonal terms in the
Hamiltonian.”

It would be good to at least know what these words means,
and why physicists find the quantum dimer model interesting.
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Open enumerative problems

See

Tri Lai, https://arxiv.org/abs/2109.01466 Problems in the
Enumeration of Tilings

and

James Propp, https://arxiv.org/abs/math/9904150
Enumeration of Matchings: Problems and Progress
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The community

The listserv DOMINO@listserv.uml.edu is a watering-hole for
people who are interested in this topic.

I also run ROBBINS@listserv.uml.edu (focusing on
octahedron-like recurrences and integrable phenomena of a
combinatorial nature) and DAC@listserv.uml.edu (focusing on
dynamical algebraic combinatorics).

Thanks for listening!
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